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A  F R I E N D S  O F  C A N C E R  R E S E A R C H  W H I T E  P A P E R

Supporting the Application of 
Computational Pathology in Oncology 

Introduction
Biological heterogeneity of cancers causes tumors to respond differently to the same treatments. 
Thus, there is a compelling need to appropriately diagnose patients and identify relevant biomarkers 
for oncology treatments in both clinical practice and trials. Digital pathology is an emerging 
application in oncology drug development and clinical care, which allows for whole-slide image 
creation for storage, viewing, analyses, and interpretation. Digitized images are used directly by 
pathologists for biomarker interpretation, cellular annotation, and diagnosis. These images can 
also be used to support development of computational pathology platforms that utilize techniques 
such as artificial intelligence (AI) and machine learning (ML) to analyze and measure specific 
image elements, such as subvisual morphological patterns and phenotypes, identify features, and 
generate reproducible and structured data. These AI and ML platforms referred to in aggregate 
as computational pathology, may establish novel biomarkers, aid in quantifying prognostic and 
predictive biomarkers currently assessed or categorized by a pathologist, and expedite diagnosis 
or pathological scoring, all of which may go towards identifying and selecting patients for oncology 
treatments. Digital and computational pathology encompass several linked workflow components 
including both the digitization of the whole slides as well as the platforms for analysis (Figure 1). 

Figure 1: Workflow Components of Digital and Computational Pathology 
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Objectives
Computational pathology has the potential to generate novel insights and biomarkers, and 
provide greater accuracy, reproducibility, and standardization of pathology-based features 
to aid in oncology drug development. Friends of Cancer Research (Friends) assembled a 
multi-stakeholder group of experts including government officials, computational pathology 
platform developers, academic pathologists and researchers, and biopharmaceutical 
industry members to outline proposals that facilitate robust development of computational 
pathology platforms for oncology drug development. The objectives of this group were to: 

• Characterize current and future uses of computational pathology in oncology drug 
development and how they can facilitate clinical research.

• Identify the challenges in current drug and diagnostic co-development and articulate lessons 
learned to circumvent these in computational pathology. 

• Provide proposals to facilitate robust development of computational pathology platforms for 
oncology drug development, including: 
1. Outline input and platform performance characteristics to report for optimized transparency.
2. Establish a risk classification framework to inform evidentiary needs and performance criteria. 
3. Establish common reference standards and repositories of reference materials 

to support future platform development and cross-validation of platforms. 

Uses of Digital and Computational Pathology in Oncology Drug 
Development 
Digital pathology currently aids oncology drug development in operational and logistical tasks 
by supporting remote sharing of slides, storage of data for future analyses, and promoting 
efficient training of pathologists (Table 1). However, this white paper will focus on the use of 
AI/ML and other (image-based) computational pathology methods into a digital pathology 
workflow. Computational pathology can identify and quantify features from image data 
beyond human analytic capability. As such, computational pathology can establish novel 
biomarkers and improve current assessment of pathological features that would not otherwise 
be produced through conventional pathological evaluation. While this white paper focuses on 
the use of computational pathology in oncology, there is promise in other applications such 
as in non-alcoholic steatohepatitis (NASH)1, inflammatory bowel disease (IBD)2, and other 
diseases, and the proposals described herein may be relevant to these other applications.

Computational Pathology Applications in Oncology Drug Development 
There is a spectrum of applications for digital and computational pathology throughout oncology 
drug development, including early discovery, pre-clinical and translational research, early phase 
trials, registrational trials, post-market/clinical use (Table 1). While some applications are currently 
in use in oncology drug development (e.g., digitization of tumor slides for future biomarker 
correlation to outcomes), others are currently in various stages of development (e.g., prediction 
of biomarker status) or are not yet ready for trials or clinical use (e.g., exploratory endpoints). 
Further, while each phase of development is depicted as distinct, the long-term goal for an 
integrated computational pathology workflow should be considered as it will determine the types 
of evidence and validation necessary for the platform. For example, a computational pathology 
platform used in exploratory translational research or early phase trials may not be intended for 
use in later phase trials or clinical care, while the goal for a platform used in a late phase trial 
may be to develop a companion diagnostic (CDx) for use in the post-market setting. Therefore, 
as some platforms may be used in several phases of drug development, developers should 
consider the various validation needs of these uses early in the platform development process.
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Table 1. Examples of Potential Uses of Digital Pathology Workflows in 
Oncology Drug Development 

Drug Development Phase

Use of Digital 
Pathology Pre-Clinical/Research Exploratory/ 

Translational
Early Phase Prospective Trials 

(I/IIa)
Late Phase Prospective 

Trials (IIb/III)
Post-Launch/Clinical 

Use

Digital 
Pathology 
Workflow

• Reading/ 
interpretation of 
pharmacology models 
and toxicology studies 
from digital images

• Peer review of 
toxicology digital slides 
from non-GLP or GLP 
studies

• Qualitative 
assessment of 
multiplex biomarker 
assays

• Evaluation of drug 
distribution (PD)

• Pathologist manual 
annotation and semi-
quantitative scoring of 
images for biomarker 
prevalence, discovery 
and validation

• Exploration of manual/ 
human interpretable 
features as biomarkers 
(i.e., mitosis count, IHC 
scores, % immune cell 
infiltrate)

• Archiving slides and 
retrospective qualitative 
or semi-quantitative 
biomarker analysis 

• Review of biomarker status 
for trial enrollment

• Pharmacodynamic 
biomarker measurements 
using digital images 

• Promote pathologist peer 
review, document decision-
making process, and 
improve quality

• Visual review for trial 
enrollment: biomarker 
measurement as 
inclusion criteria

• Foster pathologist 
peer review, document 
decision process, and 
improve quality

• Measure clinical trial 
endpoint (e.g., pCR) 
using digital images

• Pathologist remote 
disease diagnosis, 
second opinion 
consult, tumor 
boards, pathologist 
education/board 
certification

• Store images for 
future analysis

• Pre-screen for 
selection of treatment

• Promote efficient 
training of 
pathologists

Computational 
Pathology 
Analyses
Based on 

Digital 
Pathology 
Workflow

• Toxicology/ veterinary 
pathology read/ count 
assistance on digital 
images

• Investigation of novel 
biomarkers, spatial 
characterization

• Evaluation and 
quantitation of drug 
distribution (PD)

• Quantitative 
assessment and 
interpretation 
of multiplexed 
biomarkers

• Retrospective 
analysis of clinical 
trial data to discover 
new biomarker 
spatial correlations 
or image features 
with prognostic or 
predictive value

• Enables quantification 
of histologic feature 
to create a unique 
biomarker(s)

• Data driven biomarker 
scoring 

• PD biomarker quantification
• Tool for clinical trial 

enrollment
• Exploration of predictive 

biomarkers with more 
precise and continuous 
cutoffs

• Support, guide, and monitor 
pathologist scoring

• Trial enrollment: 
Biomarker 
measurement as 
inclusion criteria

• Evaluating exploratory 
endpoints

• Clinical trial outcomes 
assessment (e.g., pCR, 
RCB)

• Discovery of biomarkers 
in TME that may 
correlate to efficacy 
and/or safety

• Support, guide, and 
monitor pathologist 
scoring

• Biomarker 
assessment for 
targeted treatment 
identification

• Pre-screen followed 
by confirmatory 
testing for treatment 
selection

• Support, guide, and 
monitor pathologist 
scoring

GLP: Good Laboratory Practice, IHC: immunohistochemistry, PD: pharmacodynamics, pCR: pathologic complete response, RCB: resid-
ual cancer burden, TME: tumor microenvironment.
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Platform Description and Use
For each computational pathology application, it will be useful to have a clear description 
of what it does and how it will be used, including the level of reliance on the output. 
This description will impact the evidentiary needs for validation. Some platforms may 
improve existing manual processes and assist the pathologist by enhancing or providing 
efficiencies (e.g., image quality control and low-level tasks like object or feature recognition, 
counting, and segmentation). Results generated from platforms that assist the pathologist 
in routine tasks or workflow support rely on the pathologist’s final judgment and “sign-off.” 

However, computational pathology platforms are likely to provide novel insights that go 
beyond traditional histopathology assessments of pathologists, such as novel quantitative 
biomarker discovery or detection of spatial relationships between multiple biomarkers. These 
platforms may be further divided into those that produce an output that can be independently 
validated by a pathologist or other orthogonal method (e.g., DNA/ RNA sequencing) and 
those with an output that cannot be independently generated by a pathologist or other 
mechanism (i.e., “black box”). The ability to verify a platform’s output by an alternate method 
may impact the level of evidence necessary to support its use. For example, in a clinical 
setting, a platform used as a pre-screen for a biomarker followed by confirmatory testing 
with a gold standard methodology (e.g., sequencing) may have different evidentiary needs 
for validation than if the output is the sole determinant for a patient receiving treatment. 

Challenges in the Current Diagnostic and Drug Development Landscape 
Currently, oncology diagnostic development for a predictive biomarker generally follows the 
paradigm where a single test or assay defines a single biomarker for a specific drug in a drug-
diagnostic co-development model. This paradigm usually results in the U.S. Food and Drug 
Administration (FDA) approval of a CDx, which provides information that is essential for the safe 
and effective use of the corresponding drug or biological product.3 However, in clinical practice, 
additional assays, including laboratory developed tests, are often independently developed for 
the same biomarker and may be used in lieu of the approved CDx. As a result, a diverse set of 
assays with varying performance and predictive ability will be in use to detect the same biomarker 
to assist with treatment selection. Without robust data about performance and comparability 
across assays, this may result in confusion and lack of confidence in the diagnostics. This concern 
is reflected in FDA’s recently released final guidance: Oncology Drug Products Used with Certain 
In Vitro Diagnostic Tests: Pilot Program.4 The pilot aims to increase transparency regarding 
performance characteristics for tests used to identify biomarkers for selection of oncology drug 
products.
 
Previous biomarker alignment and concordance demonstration projects on programmed death 
ligand 1 (PD-L1) immunohistochemistry (IHC)5,6 and tumor mutational burden (TMB),7 highlight 
disparate methodologies in biomarker assessment across available assays, with various 
clinical cutoffs used for reporting results and supporting treatment decision-making, possibly 
leading to disparate care for patients. The discordance seen in these projects provides lessons 
learned for improved prospective harmonization and transparency in the pre-market stage for 
computational pathology. 

Disparate platforms and methodologies for biomarker assessment may make comparing 
computational pathology platforms challenging unless harmonization efforts exist. Currently, 
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there is not a simple mechanism for comparing the performance of the multiple available 
computational pathology platforms assessing the same biomarker. However, addressing this 
gap could support broader clinical use of computational pathology derived biomarkers, in 
addition to supporting broader regulatory authorizations outside of the single-platform, single-
drug paradigm. Outlining best practices for validation studies, identifying and reporting key input 
and platform performance characteristics, and establishing standards to support the consistent 
performance of different computational pathology platforms can address concerns around test 
accuracy, reliability, and comparability.

Proposals for Robust Use of Computational Pathology in Drug 
Development 
The following proposals for computational pathology development and use in oncology drug 
development will help to ensure the development of robust and well characterized platforms 
while enabling innovation. 

Proposal 1: Input and Platform Performance Characteristics Reported for 
Optimized Transparency 
Transparent methodology, input requirements, output scale and units, and performance 
characteristics will aid drug developers in identifying platforms that are appropriate for a given 
use case and aid platform developers and regulatory agencies in validating and evaluating 
robustness of platforms. 

To increase transparency of the platform’s methodology, the design and testing of the algorithm 
should be described, as well as the types of data used as training and validation sets, how 
the datasets were used, and how the datasets are related to the distribution of outputs. This 
information can support critical evaluation of the algorithm development and validation 
process, ensuring that datasets capture real-world parameters and are representative of the 
heterogeneity of treatment settings, patients, and tumor characteristics. Transparency in the 
baseline performance characteristics of a computational pathology platform for specific use 
cases can also help harmonize future development efforts resulting in high quality performance 
irrespective of the platform and developer.

Input Parameters to Consider in Development and Reporting
Given the multiple workflow components involved in computational pathology (Figure 1), it 
is important to clearly state and define the multiple input parameters that can influence the 
platform’s robustness and performance. Defining the input parameters encourages more 
robust and transparent platform development and use and can be used to develop quality 
metrics, which can be applied across platforms. In turn, this can aid in the development 
of pathology practice standards to ensure consistent practice irrespective of where 
tissue is collected and processed, scanning devices used, and what platform is used. 
The two relevant categories of input parameters to define for computational pathology platforms 
are tissue processing (slide preparation) and image acquisition (scanning). Within these categories, 
key parameters to consider when evaluating input quality and the robustness of a platform for 
a given intended use are listed in Table 2 and are informed by FDA guidance on the technical 
performance assessment of digital pathology whole slide imaging devices.8 Each input parameter 
can be described or measured, and the appropriate specifications and quality metrics required 

Table 2: Input Parameters to Define and Evaluate* 
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Table 2: Input Parameters to Define and Evaluate* 

Parameter Definition Considerations

Tissue and Slide Processing

Means of Tissue 
Acquisition

The type of tissue sample (e.g., excisional, 
core needle, fine needle aspirate, cytology, 
etc.)

Relevant to sampling bias and potentially algorithm 
performance; Relevant to valid use of platform per 
sample type

Tissue Sample 
Origin

The origin of the tissue sample (e.g., primary 
tumor vs. metastatic lesion vs. lymph node) 
as well as organ site

Relevant to valid use of platform per tissue origin

Tissue Processing Specific steps for processing tissue (e.g., 
freezing, type of fixative, fixation time, etc.)

May impact tissue quality or usability with the 
platform; Some artifacts are specific to tissue 
processing and may affect the quality of the stain 
applied; Platforms may work differently on fresh frozen 
vs. FFPE tissue, etc.

Glass Slide Type A description of the slide including thickness 
and slide material

Slide type may impact coloring and depth of the 
tissue that is measured and may affect opacity

Tissue Thickness Acceptable range of tissue thickness in 
microns

May affect image quality and characteristics such 
as color and optic density of features as well as the 
number of cells analyzed

Tissue Area Minimum and maximum tissue area 
recommended for reliable and reproducible 
analysis, including tissue area alone as well 
as tumor content (as a percentage of total 
area)

There may be a minimum amount of tumor tissue/
tumor cells required for the analysis

Tissue Folds/
Tears

Description of any tissue folds or tears in the 
tissue, and how these are handled

Presence of tissue folds/tears which may cause 
out-of-focus digitization, in addition to the reduced 
usability of areas that are directly affected 

Surgical Ink/
Pigments

Presence of surgical ink or other markings, 
and how these are handled 

Markings may impact the software, and may result in 
false counts and misidentification of features 

Other Tissue 
Artifacts

Other relevant artifacts (e.g., tissue lifting, 
incomplete decalcification, dust or surgical 
glove powder, bubbles, over fixation, 
improper dehydration, tissue bloating, etc.9) 
and how they are handled

Various artifacts may impact analyses when present

Tissue Age The recommended duration between when 
slides are cut and stained 

May impact the stability of some features and affect 
stain characteristics such as intensity and color 

Slide Age The recommended duration between tissue 
staining and scanning 

The time post-staining may impact intensity and 
quality of the slide (e.g., chromogen stability, diffusion 
of chromogenic dyes, fading of fluorescent dyes, etc.)

will depend on the platform’s application. Certain input parameters may be easier to control for 
quality (e.g., slide age) than others (e.g., tissue artifacts) and future work is needed to define quality 
metrics. The input parameters described in Table 2 are intended to help computational pathology 
developers directly by describing the specifications of their platform with regards to variation in the 
input parameters. This can also help drug developers understand and evaluate the capabilities 
and limitations of algorithms when considering their potential use in supporting drug development. 

*Concepts in this table may be specific to currently existing technologies (e.g., IHC). As emerging technologies evolve (e.g., 
multiplex immunofluorescence, RNA mass spectrometry, etc.) the input parameters may also evolve depending on the 
technology.
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Parameter Definition Considerations

Antibody Used The antibody used for staining including 
clone, company, and catalog number

The type, batch, and age of antibody used may 
impact staining results

Staining 
Conditions 

The staining conditions, such as incubation, 
blocking, etc.

Staining conditions may alter the staining intensity 
and results10

Slide Storage The manner and environment in which the 
physical slides are stored

Storage conditions (e.g., oxygen, humidity, sun or heat 
exposure) may impact staining results and/or tissue

Image Acquisition

Scanner 
Hardware and 
Software Versions

Description of scanner hardware and 
software versions

Differences in hardware (e.g., optics) as well 
as software (e.g., pre/post-processing, color 
normalization, or application programming interface) 
can impact the algorithm performance

Scanner Software 
Configurable 
Parameters

Description of configurable parameters in 
the scanner software and the actual values, 
or acceptable ranges, which should be used 
during the scanning operation

Differences in scanner software configurable 
parameters (e.g., exposure and saturation) can 
impact the algorithm performance

Slide Viewer Used Software and version used for slide viewing Relevant to ability to use platform with different slide 
viewers and screens

Type of Image 
Files

Description of acceptable file formats 
and compression, and use of single plane 
images or image stacks 

Relevant to whether image files can be appropriately 
processed by the algorithm

Region of Interest 
Selection

Information on whether the whole tissue, 
whole tumor area, or specific fields of view 
(including size) are used by the algorithm

The type of region may affect how algorithms are 
trained and their applicability to different tissue types 

Magnification The acceptable range of magnification of 
the digitized slide 

Relevant to the use of the platform at different 
magnifications 

Resolution Specified magnification for image 
acquisition (e.g., 100x, 200x, 400x) and any 
requirements related to pixel resolution 
(expressed as micrometers per pixel)

Algorithms may require specific magnification during 
image acquisition and specific pixel density/resolution 
to identify features

Color Details of the color processing, such as 
white-balance or contrast settings, which 
result in hue, saturation, brightness of the 
image; metrics for acceptable color settings 
and characteristics should be reported (with 
ranges of acceptability or a description of 
the color normalization procedure if used)

Algorithms can be sensitive to variations in color and 
contrast

Focus Quality The focus quality required by the algorithm 
and a metric for acceptable focus quality

Focus quality can impact algorithms and should be 
quantified globally or locally as appropriate
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Further, specifying performance/operating boundaries for the preprocess components of the 
workflow (e.g., scanners) will support use within the validated workflow. An appropriate description 
of the performance/operating boundaries may enable evaluation of the extent and conditions 
under which two different platforms used for the same purpose might produce similar results. 
The scanner model(s) and specific scanner configuration and acquisition protocol used for the 
training and testing of the computational pathology platform should be explicitly stated.

The specific parameters and acceptable ranges and values will depend on the computational 
pathology application. This includes the interaction of a human operator with the platform’s output. 
For example, acceptable ranges may be wider when a human operator can independently check 
the output of the software or if it is being used to help direct a pathologist to examine certain slide 
areas, and narrower if the results cannot be independently verified by a human user.

Appendix 1 applies the reporting of input parameters to hypothetical use cases of computational 
pathology platforms. Some parameters, such as slide age, may be common across different use 
cases, whereas other input parameters may vary depending on the use case. Understanding 
the commonality or variability across use cases can also inform prioritization, by identifying 
parameters that may be relevant for model development and performance assessment for all 
studies. 

Performance Characteristics and Assessment 
Identifying and reporting key performance characteristics for computational pathology platforms 
will increase transparency, provide study designs and assessment methods for others to follow, 
and inform performance expectations for other quality and robust platforms. This may also 
increase confidence in using independently developed and validated platforms for a common 
purpose. Alignment is needed on standardized methods to report these characteristics to aid in 
transparency and the comparison.
 
Guidelines for establishing performance of AI or image analysis methods in computational 
pathology are limited. The FDA Center for Devices and Radiological Health (CDRH) has cleared 
one computational pathology device under a regulation that defines a broad intended use: “A 
software algorithm device to assist users in digital pathology […] to provide information to the user 
about presence, location, and characteristics of areas of the image with clinical implications.”11 

The special controls provided outline what information should be included in a Class II marketing 
submission for performance assessment, and the decision summary of the FDA-authorized 
device includes a summary of the scientific evidence that served as the basis for FDA’s decision.12 
Other relevant FDA resources to understand key performance characteristics include regulations, 
reclassification orders, decision summaries, guidance documents, and other written works on the 
regulation of software as a medical device (SaMD) in areas other than pathology.13

The platform description, what it does and how it will be used, will impact its key performance 
characteristics. The College of American Pathologists published recommendations for the 
validation of whole slide imaging systems in clinical practice14 and further provides resources 
related to the validation of image analysis platforms in clinical practice.15 The Digital Pathology 
Association also broadly noted both hurdles and solutions for implementing computational 
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pathology and validating these platforms.16 Appendix 2 provides considerations for validation 
study designs, as well as examples of how the design elements were met in a few computational 
pathology validation studies. 

Performance should be assessed on a dataset not used in the platform’s development or training 
and is representative of the clinical population the platform is intended to evaluate to offer an 
unbiased assessment of performance.17 Performance characteristics may be influenced by details 
such as true biomarker prevalence in the study population, as well as training and testing data 
sources and sampling. These details and their impact on performance should be described. The 
input parameters highlighted in Table 2 will also impact performance and should be considered. 
Key performance characteristics should be evaluated in a manner consistent with what the 
platform does and how it will be used. This may include evaluation by standalone performance, 
a measure of the platform performance with little to no input or interpretation from the clinical 
end user, multi-reader multi-case study performance, and/or a measure of performance with 
interaction from the clinical end user or multiple end users. The end user involved in validation 
should be different than the user(s) involved in training. 

Further, focusing on “explainable AI” (i.e., methods allowing for a representation of the input 
parameters used by the algorithm such as overlays of high attention areas or cell segmentation), 
may aid in the interpretability of “black box” algorithms. This interpretability could have two 
functions: allow for review of the impact of preanalytical variables, such as those detailed in Table 
2, on the quality of the results, and bring additional confidence in the results to the end user. 

Establishing Performance Comparisons 
When performance comparisons to a “ground truth” or reference standard are possible and 
desirable, various study designs can be employed and careful consideration should be given to the 
method for establishing ground truth. Several methods exist for using pathologist interpretations 
as the reference standard, including using the original sign-out diagnosis, single readers, or 
consensus panels. Additionally, the concordance within pathologists should be considered when 
comparing concordance between a pathologist’s interpretation and the platform’s output, as 
there is also heterogeneity within pathologists’ readings. Poor concordance within pathologists 
may indicate that multiple pathologists are needed to determine the reference standard. Also, 
the within-pathologist concordance may provide a performance criterion for model-pathologist 
concordance, assuming they are measured the same way.

In cases where comparison to a pathologist score/interpretation is not desired or possible, 
orthogonal methods that generate biological outputs such as gene or protein expression may be 
an acceptable comparison. For novel biomarkers, or in other cases where no orthogonal methods 
exist, native or contrived reference materials with a known or well-characterized status may be 
used as a comparison. Ultimately, establishing performance in relation to clinical characteristics 
or outcomes may be highly desirable, but is not always practical for certain use cases. 

To compare the performance of several different computational platforms that report the same 
output, establishing a reference dataset with defined ground truth and pre-defined analysis 
methods is recommended. There is precedent for such approaches, such as the CAMELYON16 
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grand challenge,18 in which several model developers created models to detect lymph node 
metastatic disease and then tested the performance of their models on a single validation 
dataset.

Reporting Quantitative Measurements 
Platforms may measure or define the biomarker of interest differently and direct cross 
comparisons may be challenging, especially with binary outputs. Although dichotomization of 
continuous biomarkers to a binary reading (e.g., high vs. low) by establishing a cutoff correlated 
to a clinical feature or outcome is frequently used in registrational trials for drug-CDx approval, 
the quantitative biomarker value (i.e., continuous scale) is often provided by computational 
pathology platforms and should be retained. Binary readings are often clinically desirable for 
ease of interpretation. How cutoffs are defined and derived should be encouraged. As part of 
the effort to establish an adequate cut off, there should be clear understanding of the variability 
in measurement surrounding the cutoff and reporting of the relevant range of quantitative 
measurements, their use within a final platform, and their relationship (if any) to outcomes in 
clinical trial data. 

Proposal 2: Establish a Risk Classification Framework to Inform Evidentiary 
Needs and Performance Criteria 
Adequate evidence generation, in the form of analytical and clinical validation, is needed to 
support the use of computational pathology platforms in oncology drug development. Further, 
a risk-based framework can support and inform this evidence generation and establishment of 
performance criteria across platforms and intended uses. Regulatory flexibilities are critical to 
encourage innovation and applying a risk-based approach will build an understanding of when 
flexibility is appropriate, what types of evidence are needed for computational pathology use in 
clinical trials and supporting regulatory approval, and regulatory pathways associated with a 
given platform. 

Current Regulatory Classification and Pathways for Marketing
Regulatory agencies have applied existing risk classification systems for medical devices and 
diagnostics to digital pathology platforms. This paper focuses on the U.S. regulatory pathways, 
but depending on the intended use outside of the U.S., additional regulatory requirements should 
be considered in development (e.g., IVDR regulations). Diagnostic tests and digital pathology 
platforms are regulated based on their risk classification (i.e., Class I-III FDA designations), which 
helps inform the performance and reporting requirements.

Certain digital pathology platforms have been regulated as “Whole Slide Imaging” systems. In the 
U.S., these have largely been regulated as moderate-risk, class II devices requiring clearance of a 
510(k) to be marketed.19 FDA issued recommendations regarding technical performance testing 
that should be completed to support a marketing submission for a whole slide imaging system.8 
FDA has also regulated some AI/ML platforms as moderate-risk, class II devices, and issued 
special controls for these.12 Further, the FDA, Health Canada, and United Kingdom’s Medicines and 
Healthcare products Regulatory Agency (MHRA) have put forth 10 guiding principles to inform Good 
Machine Learning Practices (GMLP) for medical devices using AI/ML, which could be applicable to 
computational pathology devices.20 Further, FDA’s Drug Development Tool program21 and Medical 
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Device Development Tool program22 offers opportunities for public health stakeholders to pursue 
FDA qualification of digital and computational pathology tools. 

Table 3 summarizes the current U.S. regulatory pathways and some applicable regulatory controls 
for specific defined use cases. Of note, this is not an exhaustive list of all regulatory controls that 
apply to developing and marketing a computational pathology platform. In addition to existing 
use cases and regulatory controls, a risk-based approach should be applied to future, not yet 
established use cases. Table 4 suggests example future use cases and a potential risk-based 
approach to regulating them. However, it is important to note there are currently no cleared or 
approved devices for these uses, and the FDA may not agree with the relationships between 
use cases and regulatory controls. Readers are encouraged to engage the FDA early and often, 
including with a Q-submission or a pre-IND to inquire about use cases and regulatory pathways.23

Table 3: Potential Regulatory Pathways and Regulatory Controls 
for Marketing Digital Pathology Platforms by Intended Use24

Device 
Name, Risk 

Classification, 
Regulatory 

Pathway

Intended Use Summary Potential Development and Evidence 
Generation Expectations

Software 
Algorithm 
Device To Assist 
Users In Digital 
Pathology25 
Class II, 510(k)  

Intended to aid a healthcare provider in 
determining a pathology diagnosis, provide 
information to the user about presence, 
location, and characteristics of areas of the 
image with clinical implications

Design Controls 21CFR820
Quality Management System ISO13485
Demonstrate substantial equivalence to a predicate
Good ML Practices
See Special Controls for Evidence Generation 
Expectations

Digital 
Pathology 
Image 
Viewing And 
Management 
Software26

Class II, 510(k)

Intended for viewing and management of 
digital images of scanned surgical pathology 
slides, as an aid to the pathologist to review 
and interpret these digital images for the 
purposes of primary diagnosis

Design Controls 21CFR820
Quality Management System ISO13485
Demonstrate substantial equivalence to a predicate
Bench testing8 
Clinical Validation Study comparing to reference 
standard or manual read

Digital 
Pathology 
Display27

Class II, 510(k)

Intended for in vitro diagnostic use to display 
digital images of histopathology slides 
acquired by whole-slide imaging scanners 
that are used for review and interpretation by 
trained pathologists

Design Controls 21CFR820
Quality Management System ISO13485
Demonstrate substantial equivalence to a predicate
Good ML Practices
Bench testing8 
Display Equivalency Study

Whole Slide 
Imaging 
System28

Class II, 510(k)

Intended to aid the pathologist in review and 
interpretation of digital images of surgical 
pathology slides by automating digital slide 
creation, viewing, and management

Design Controls 21CFR820
Quality Management System ISO13485
Demonstrate substantial equivalence to a predicate
Good ML Practices
Bench testing8 
Clinical Validation Study
Human factors study

Table 4: Example Future Use Cases with Potential Regulatory Pathways and Controls*
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Table 3: Potential Regulatory Pathways and Regulatory Controls 
for Marketing Digital Pathology Platforms by Intended Use24

Use of Computational Pathology Platforms in Clinical Trials
Currently, FDA guidance has not specifically addressed the use of computational pathology 
methods in clinical trials. Although others have published information and recommendations 
that may be helpful,29 regulatory expectations for use of computational pathology platforms in 
oncology trials are still nascent. Recent publications have highlighted regulatory considerations for 
medical imaging AI/ML devices, including the existing regulatory pathways.30,31 Gaps in knowledge 
and test methods, and the novelty, pose a challenge for identifying regulatory expectations.32 To 
this end, this proposal seeks to build on prior regulatory resources by providing suggestions for a 
risk-based approach to these items, to advance the use of computational pathology platforms 
in oncology drug development. 

While FDA has not opined specifically on the use of computational pathology in clinical trials, the 
agency has issued guidance on use of diagnostics and CDx in drug trials, as well as the use of 

Table 4: Example Future Use Cases with Potential Regulatory Pathways and Controls*

Potential Intended Use
Anticipated Risk 
Classification & 

Regulatory Pathway

Possible 
Regulatory 

Controls

Potential Development and Evidence 
Generation Expectations

Intended for use as a 
companion diagnostic

De Novo (Class II) or 
PMA (Class III) based 
on risk

Premarket 
Approval

Design Controls 21CFR820
Quality Management System ISO13485
Good ML Practices
Demonstrate reasonable assurance of safety 
and effectiveness (AV, CV) 
Analytical validation studies (e.g., sensitivity, 
specificity, precision, accuracy, limit of 
detection, etc.)
Clinical validation studies 

Prescreening (with confirmation 
by another central test or CDx)

De Novo (Class I 
or II), due to lack 
of existing product 
code or classification 
regulation

Special 
Controls

Design Controls 21CFR820
Quality Management System ISO13485
Demonstrate substantial equivalence to a 
predicate
Bench testing8

Other data and controls, as requested by 
regulators, e.g.:
Good ML practices
Clinical Validation or Concordance Study

Automated computational 
digital pathology system for 
scanning, converting, reading, 
and detecting/measuring a 
biomarker on a pathology slide, 
with oversight and confirmation 
of output by a physician.  

De Novo (Class I 
or II), due to lack 
of existing product 
code or classification 
regulation

Special 
Controls 

Design Controls 21CFR820
Quality Management System ISO13485
Good ML Practices
Demonstrate reasonable assurance of safety 
and effectiveness (AV, CV) 
Analytical validation studies (e.g., sensitivity, 
specificity, precision, accuracy, limit of 
detection, etc.)
Clinical validation studies
Usability study

*These are suggestions for a risk-based approach but have not been formally established via FDA classification decisions, 
clearances, or approvals to date.



S u p p o r t i n g  t h e  A p p l i c A t i o n  o f  c o m p u t A t i o n A l  p A t h o l o g y  i n  o n c o l o g y14

digital health technologies (DHTs) for remote data acquisition in clinical trials.33–35 Depending 
on the intended use, computational pathology platforms could be considered a diagnostic 
device as well as a type of DHT. Similar to when using a diagnostic device, or when using a DHT, 
trial sponsors should demonstrate that the platforms are fit-for-purpose (i.e., that the level of 
validation and performance characteristics are sufficient to support its use and interpretability) 
prior to use in the trial. Of note, evidence needed to demonstrate the platform is fit-for-purpose 
may not be commensurate with what would be expected to support regulatory authorization. 
Verification and validation would be expected, although the extent is not clearly defined. 
Additionally, there is an open question as to which quality and design principles to apply when 
developing a computational pathology platform for clinical trial use. With uncertainty in the 
regulatory pathway, the best course of action is to engage the FDA with a pre-IND submission in 
which one describes the computational pathology platform, the verification and validation results 
and plans, and how it will be used in the clinical trial.

Considerations that may be relevant to determining the level of evidence and design principles 
needed to demonstrate a computational pathology platform is fit-for-purpose could include:
1. The intended use of the platform;
2. Risk to patient safety;
3. Intent to support a marketing application for the platform or a drug; and
4. Business and trial operational risks.

For example, regarding intended use and risk to patients, computational pathology platforms 
used for pre-screening and confirmation with another medically established method, or to enrich 
for biomarker positive patient enrollment, may not require testing that is as robust as a platform 
used as the sole method for selecting participants for a trial or treatment arm, given these use 
cases pose less risk to patient safety. However, it is important to understand the concordance 
between the computational pathology platform and the confirmatory method, to avoid biases. 
Similarly, platforms used in an early phase study for biomarker discovery or exploration of disease 
biology likely require less stringent levels of validation and technical performance testing than a 
platform being used in a registrational trial where the data will inform patient management and 
support marketing authorization of the platform. Good software engineering practices and state-
of-the-art software validation practices may be sufficient, from a quality and design perspective, 
for these lower risk use cases. Meanwhile, platforms being developed as a CDx and with an intent 
to market should be developed in accordance with design controls, AI/ML GMLPs, and would likely 
need to generate technical performance results, as well as robust evidence of analytical and 
clinical validity, among other data, to support a marketing submission. Further, it is imperative 
that the algorithm used in the clinical trial is predefined and locked in prior to use, including 
establishment of a cutoff. 

The International Medical Device Regulators Forum (IMDRF) has published a SaMD risk 
categorization framework with four risk categories (I-IV) based on significance of the information 
to the healthcare decision (e.g. whether output from a SaMD is used to treat or diagnose, drive or 
inform clinical management) and the severity of the health condition.36 Given the serious nature 
of cancer, using this risk categorization to inform evidence generation would be largely influenced 
by the intended use (e.g., inform management vs. treat or diagnose) and sponsors may find value 
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in applying this approach to the use of DHTs in clinical trials. 

In addition to assessing the level of evidence needed to demonstrate a computational pathology 
platform is fit-for-purpose, sponsors should ensure compliance with other applicable regulatory 
requirements for the clinical trial. For example, for deployment into a clinical trial in the U.S., 
sponsors must follow 21 CFR part 812 to assess whether the platforms are considered to pose a 
significant risk to participants and/or seek an investigational device exemption (IDE) as needed.37

In addition to patient safety risk, and unrelated to regulatory expectations, the operational risks 
to a clinical trial (e.g., logistics of incorporating new technology and costs) are also important 
considerations when determining the required level of performance testing of computational 
pathology platforms that will be used in a clinical trial. For example, a platform may present 
very little, if any, risk to patient safety, but may have an impact on important business drug 
development decisions such as a go/no go decision to proceed from an early safety/dose 
escalation trial to a registrational trial. Additionally, there are various operational models for 
implementing computational pathology in a clinical trial and commercial use, which may raise 
different risks for trial operations/business decisions. For example, implementation could use a 
centralized model (similar to central lab testing for a trial or a single-site PMA for a marketed 
diagnostic) or a distributed model (similar to a distributed IVD kit). Therefore, sponsors may want 
to assess the risks to trial operations/business decisions, when deciding whether the level of 
evidence is sufficient to use a computational pathology platform in a clinical trial.

Below are sample questions and considerations when determining fit-for-purpose performance 
testing of computational pathology platforms in oncology drug development. If the answers to 
these questions indicate a high risk to patient safety, then an organization should employ a high 
level of testing and quality oversight during development (e.g., strong engineering practices and/
or design controls). Alternatively, if the answers to these questions suggest less impact to patient 
safety, then a less stringent level of performance testing or quality oversight may be acceptable. 

Questions to Consider When Determining Fit-for-Purpose Performance Testing 
1. How will the platform be used?

• Will it be used prospectively to select patients for a trial or a treatment?
• Will it be used retrospectively for biomarker discovery, disease biology, or other exploratory 

purposes?
• Will it be used for assessment of a primary or secondary endpoint?
• Will it be used for futility analyses or other analyses for decision-making on the trial?
• Will it be used in conjunction with one or more confirmatory tests?

2. What is the risk to patients of an inaccurate result?
• Will patient management change? 
• Could patients be exposed to treatment toxicities?
• Will the dosing of patients be modified inappropriately?
• Could a patient forgo the standard of care or be enrolled when little benefit is to be   

expected?
• Could a patient be falsely excluded from receiving care with expected benefit?

3. Will the platform be the subject of a marketing authorization application? 
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• Will the platform be used to generate data in support of a marketing application for a 
drug?

• Will the platform itself be the subject of a medical device marketing application?
• Are both drug and device marketing applications intended?

4. What are the business risks of an inaccurate result? 
• Will implementation of the platform be using a centralized model?
• Will implementation of the platform be using a distributed model? 

Proposal 3: Establish Common Reference Standards 
Establishing common reference standards and repositories will support future platform 
development and cross-validation. As multiple platforms are developed for the same biomarker, 
utilizing common datasets to validate and develop these platforms can support 1) wider access 
to biomarker testing across multiple platforms showing similar performance characteristics 
that may already be in place in testing labs, 2) platform developers producing concordant or 
comparable platforms, and 3) clinician end-users making informed decisions because they will 
understand the comparability of different platforms. This may help prevent future situations such 
as that observed with the various PD-L1 follow-on tests, in which multiple PD-L1 IHC assays were 
independently developed as follow-ons for different therapies without an understanding of how 
these different assays and scoring methodologies were related.38 

While a single computational pathology platform may be used in a registrational trial for 
biomarker identification, additional, “follow-on” platforms measuring the same biomarker may be 
developed. Where available, the original slides could be used to ensure new platforms developed 
have high concordance with the originally approved platform, in addition to the other datasets 
used for validation of the follow-on platforms. However, institutional definitions of images as 
biospecimens versus de-identified data will impact the ease with which the images may be 
stored, shared, or used. Further, there are existing country-specific requirements and regulations 
regarding maintaining control of patient-level data that may impact the feasibility of sharing trial 
images. If the images cannot be shared, the platforms could be made available to the sponsor 
to evaluate performance across platforms using digital images from registrational studies, 
assessing the comparability of the performance of multiple platforms on its own dataset without 
sharing the slides. Although it would benefit drug developers to assess performance across 
platforms to identify a biomarker of interest, the scalability and management of such research is 
uncertain. The burden would be on drug developers to ensure proper consent for this future use 
and to conduct this work, as well as add potential regulatory or commercial risk to be involved 
with validation of third-party platforms outside of the CDx, which may limit the viability of this 
approach. 

Unlike the banking of tissue and/or blood samples in which there is limited supply, banking slide 
images with proper informed consent for future use may be more attainable. However, criteria to 
define the appropriate number of images, or size of the training dataset will vary according to the 
platform being developed and the intent of use. Additionally, the storage, back-up, and auditing 
of the images are not negligible undertakings. The memory storage size and cost of databases 
needed to hold the images and associated metadata are substantial and should be considered 
when developing datasets. Furthermore, the workflow for digitization and interpretation of the 
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images involves many different people, roles, as well as potentially different locations (e.g., where 
the slide is cut, digitized, and image analysis conducted). Therefore, developing robust reference 
datasets must encompass the relevant stakeholders (e.g., sponsors, pathology labs, platform 
developers).

There are additional opportunities to develop reference datasets outside of a single sponsor in 
a pre-competitive manner. Commercially acquired digitized images, or those collected through 
a consortium, could provide access to images that could be analyzed using the same platform 
and algorithm deployed for the registrational trial of interest as a comparator and reference for 
other platforms. Consortia have previously used a commissioned third-party to securely hold 
and analyze data from drug and/or diagnostic developers and share results with the community. 
Alternatively, a federated model for a reference dataset could be implemented, with those in 
control of the images maintaining control over their critical datasets (either a sponsor or a source 
institution) but allowing a model to run on the images without the images themselves leaving 
the virtual workspace. This federated model would allow for concordance testing both between 
different datasets as well as different algorithms. Depending on the intended use of the reference 
dataset, linked outcomes data may not be necessary, which may increase the comfort level of 
sponsors to share data. Lastly, existing infrastructure may be leveraged to share digital pathology 
images, including the National Cancer Institute’s (NCI) Imaging Data Commons,39 a cloud-based 
repository of publicly available cancer imaging data, as well as the precisionFDA40 platform, 
a secure, cloud-based environment permitting collaborative research and data sharing on a 
secure platform. 

A common reference set of slides are needed to support generating robust data repositories. 
Recommendations for establishing a reference dataset (also see these references41,42):
• Slides are digitized shortly after staining to minimize the impact of storage on the quality of 

slides. A timing threshold could be established and reported.
       o   If slides are not digitized shortly after, such as when archived samples are imaged, detailed    
           reporting of the slide age is needed. 
• Images are stored appropriately and in the same file format to ensure the greatest amount 

of interoperability. 
       o   There are current initiatives to expand the DICOM standard to pathology imaging and could    
           be one mechanism to enable alignment. 
• Access to stored documents is secure and controlled, but not cumbersome.
• Relevant preprocess metadata including input parameters (Table 2) are linked to the images.
• Clinical metadata is ideally included, containing orthogonal information such as genomic and 

proteomic data, treatment regimens, and outcomes. 
• Relevant characteristics of the intended patient population and measurement inputs are 

sufficiently represented in a sample of adequate size. 
• All metadata are reported in a standardized format and of a given quality.
• Dataset represents the heterogeneity of real-world clinical/laboratory practices and patient 

populations, including slide preparation, scanning, patient characteristics, and tumor 
characteristics.

When platform developers leverage reference standards to perform comparisons and assess 
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performance, it is important to consider what the platform does and how it will be used, as well 
as the purpose of the reference dataset to ensure the intentions are aligned and the reference 
dataset has the appropriate data. This includes considerations on the types of tissue and slide 
processing, diseases, digitization methodology, and relevant metadata (Table 2). Reference 
datasets should also be diverse in the relevant patient and tumor characteristics, preferably from 
multiple centers to be more generalizable to real-world patient and clinical practice populations. 
It is imperative that reference datasets have data reported in a standardized format, including 
reporting the input parameters for digitization, patient and tumor characteristics, treatment 
and outcome data, and platform performance metrics and output. As noted in Proposal 2, 
computational pathology biomarker measurements should be reported as continuous variables 
in addition to binary results even if performance metrics dichotomize the data. 

Conclusions 
This white paper highlights the promise of computational pathology to aid oncology drug 
development, as well as the possible future challenges to evaluating the robustness of these 
platforms to support their validation and use in drug development. As such, the proposals outlined 
support identification and reporting of key input and platform performance characteristics, 
a framework to inform evidentiary needs and performance criteria, and opportunities for 
establishing standards and common reference datasets. Computational pathology can be used 
across the spectrum of oncology drug development, from early discovery to registrational trials, 
and the intended use for each computational pathology application will impact the evidentiary 
needs to validate the platform. Computational pathology is an evolving field with evolving 
technologies, and as such, the possible applications and validation of these platforms will grow.

In addition to this working group, there are many ongoing consortia and efforts surrounding the use 
of digital and computational pathology platforms and their validation, and collaboration is needed 
to tackle outstanding questions.43–45 Future efforts are needed to align on recommendations 
and benchmarks for quality metrics of preprocess input parameters to support transparency in 
platform development. Further, to support aligned data deposition into reference datasets, the 
development of standardized methodologies and data dictionaries is also needed. Alignment 
regarding data storage (e.g., on premises versus cloud solutions, ensuring data integrity and 
security, data transfer, redundancy/backups) is critical to ensure robust datasets for future use.

Formal guidance from regulatory bodies and relevant interest groups is needed to set 
regulatory expectations and establish performance metrics for computational pathology in drug 
development. FDA has signaled46 their consideration of AI/ML in aiding drug development, with 
discussion ongoing. Clarity in the regulatory expectations for use of computational pathology 
in clinical trials would be valuable, including the evidence to demonstrate a platform is fit-for-
purpose and the quality and design principles to apply when developing these platforms. 

While this white paper demonstrates the potential promise of use of these platforms, there are 
currently regional differences in capabilities for using this technology. Many laboratories do not 
have digitization capabilities, due to lack of infrastructure, training, adequate funding, or other 
barriers. Additionally, if digitization capabilities are available, most have only access to one 
scanner type, which may impact the ability to use various platforms if they are not developed 
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in an agnostic way to the digitization workflow. Significant uptake of robust digital pathology is 
needed to realize the promise of these platforms and future work should address these barriers 
to enable broader uptake. 

Lastly, there is an opportunity to leverage existing data (e.g., pathology slides, metadata) from 
various stakeholders to generate an accessible digital pathology dataset to cross-evaluate 
different computational pathology platforms measuring the same biomarker to support the 
concepts in this white paper. There is a precedent in the AI development industry to conduct 
“Challenges” to evaluate the variability of AI models using standard datasets for training and 
testing, and precisionFDA also hosts challenges.47 Further, Friends has conducted previous 
harmonization efforts to support aligned biomarker measurement and use, including the 
Tumor Mutational Burden (TMB) Harmonization and Homologous Recombination Deficiency 
(HRD) Harmonization Projects, and is poised to support a harmonization effort in computational 
pathology. Future work will focus on building out an appropriate use case to test the proposals 
herein, clarify workflows, and provide concrete data to support guidance efforts. 
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Below are examples of hypothetical use cases to aid in how one may consider what parameters/
conditions should be evaluated and characterized for a specific use case:

• Mitosis counting
o    Counts the number of mitoses/mm2 in a sample using an algorithmic method for identifying 
     the region of interest (ROI) or allows pathologists to select the ROI to be analyzed. 
o   Requires a minimum area of sufficient quality for analysis.
o   Can tolerate slides with large regions that are inadequate for analysis.

• Prostate cancer Gleason grading 
o   Algorithm to assign a Gleason score to prostate cancer samples.
o   Provides primary, secondary, and tertiary grades, and overall Gleason score by analyzing      
     large scale histological patterns within a specimen.
o   Requires a minimum, representative total area of sufficient quality and with accurate 
     location information for different prostatic regions; high magnification not required.
o   Less tolerant to slides with large regions that are inadequate for analysis or have artifacts.

• Metastases detection
o   Algorithm that detects the presence of metastatic cells within a biopsy.
o   High sensitivity task requiring a minimum total area of high-quality tissue and images.
o   Intolerant of slides with large regions that are inadequate for analysis or have artifacts. 

Appendix 1: Hypothetical Use Cases for Considering and Reporting Input Parameters
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Appendix 1: Hypothetical Use Cases for Considering and Reporting Input Parameters

Appendix Table 1: Reporting Input Parameters for Hypothetical Use Cases. 
This table highlights how certain input parameters listed in Table 2 may be common considerations across use 
cases or may be different dependent on use case.

Parameter Mitosis Counting Metastasis Detection for Diagnostic 
Aid HER2 Status Prediction for CDx

Tissue Sample 
Origin

fine needle aspirate not appropriate, 
other biopsy types acceptable

no specific requirements regarding 
biopsy type

Breast biopsies, breast resections, or 
specimens from metastatic sites (if 

applicable)

Tissue 
Processing standard FFPE preparation, standard H&E staining

No frozen tissue
Cold ischemic and fixation times within 

range as stipulated by interpretive 
guidelines48

Slide Type standard glass slide, 1mm thick

Tissue 
Thickness 3-5um sections

Tissue Area

2mm2 of tissue is analyzed, no tumor 
percentage minimum; region of 

interest based on algorithmic methods 
(details of method specified; i.e., 

random selection of X fields)

>1mm2 of sufficient quality tissue 
area required, no tumor percentage 

minimum; entire tissue area evaluated

>1mm2 of sufficient quality tissue area 
required and 20% minimum tumor 

content

Tissue Folds/
Tears

no tissue folds or tears in any analyzed 
region; algorithmic selection of regions 
of interest will prevent the presence of 
tissues folds/tears in analyzed regions

folds or tears and adjacent 5um 
distance will be excluded from analysis, 

excluded area must be less than 10% 
total analysis area

According to specific manufacturer QC 
procedure developed for intended use of 
the CDx, including detailed methodology 
and criteria to identify and exclude slides 

with tissue folds/tears.

Slide Age scanned within X years/months of staining

Slide Storage slides protected from light, stored at room temperature

Magnification 400X 200X or 400X 400x only
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Appendix 2: Examples of Computational Pathology Platform Validation Study Designs  
Below are examples of study designs to validate digital pathology platforms, provided based on the considerations 
for validation study design put forth in Frontiers in Medicine.49

Ground Truth Definition Case Selection Acceptable Range of 
Output Values

Possible Confounding 
Effects Identify Discrepant Cases

Algorithm compared to a 
ground truth to establish 
precision and recall

Case mix should 
reflect real-world 
setting in terms 
of morphological 
heterogeneity and 
complexity

Define acceptable range of 
deviation from the ground 
truth. This may depend on 
clinically relevant cutoffs 
that determine therapy

Consider any variables 
in image preparation. 
For example, compare 
effect of different 
scanners.

Output values outside 
the defined acceptable 
range are discrepant to 
the ground truth (can 
systematic reasons be 
identified).

Her250 Herceptest IHC scored 
based on 2018 ASCO/
CAP guidelines: Intense 
circumferential 3+ 
membrane staining in 
> 10% neoplastic cells 
are positive. The ground 
truth for the IHC results 
were defined as the 
consensus score reached 
by 3 pathologists for each 
case. 

Trained a HER2 status 
predictor model on 188 
HER2± 
H&E slides (93+/95-) 
and a test set of 187 
HER2± H&E slides from 
The 
Cancer Genomic Atlas 
(TCGA) BRCA cohort.

The fully trained CNN 
model performance 
predicted the HER2 status 
with slide-level AUC of 0.90 
(95% CI, 0.79–0.97).  
Model validation with 
an independent test set 
achieved an AUC of 0.80 
(95% CI: 0.69–0.88) at 
the slide-level. Algorithm 
prediction of Trastuzumab 
clinical response is weak 
(sensitivity .56, specificity 
.58).

Utilized a deep 
learning based color 
normalization to remove 
batch effects and 
improve generalizability 
to independent 
datasets.

Borderline case confusion 
minimized by using only 
IHC 3+ cases training. 
Pathologist annotation 
improved model 
prediction.

PD-L151 Breast Cancer PD-L1 
expression was 
determined using the 
Ventana PD-L1 (SP142) 
assay as the proportion 
of tumor area occupied 
by PD-L1 expressing 
tumor-infiltrating 
immune cells (IC), and an 
expression in ≥1% IC was 
defined as PD-L1 positive 
status.

Tissue Microarrays: 
training set 2,516 
(74.5%) cases; test 
set 860 (25.5%); and 
external test set 275.

CNN algorithm AUC 
performance with respect 
to the pathologist’s binary 
PD-L1 status was 0.911 (95% 
CI: 0.891–0.925). Test set 
AUC performance was 
0.915 (95% CI: 0.883–0.937). 
Independent test set AUC 
performance for PD-L1 
prediction was 0.854 (95% 
CI: 0.771–0.908).   

Data augmentation 
was performed to help 
the model deal with 
variability in staining 
methods and other 
differences between the 
cohorts.

Ground truth was not 
perfect; therefore, 
confirmed scores between 
3 pathologists. Tissue 
microarrays used to train 
and test the algorithm 
may not have sufficient 
representation.  
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PD-L152 Dako PD-L1 28-8 IHC with 
cutoffs of TPS ≥1% and 
≥5%.

217 samples from 
patients with NSCLC, 
600 from MEL, 400 
from SCCHN, and 293 
from patients with UC. 

AI-based assessment 
was highly correlated with 
the median score from 
manual assessment of 
PD-L1–expressing TCs by 
5 pathologists (r ranging 
from 0.73 to 0.85).

Slides were scanned 
by two separate Aperio 
AT2 scanners across 
5 days, two times per 
day (morning [AM] and 
afternoon [PM]).

A lower prevalence of 
PD-L1–positive patients 
was seen with AI-powered 
scoring (42.5% and 28.8%) 
compared with manual 
scoring (54.9% and 34.0%) 
at cutoffs of ≥1% and 
≥5%, respectively, though 
the difference was not 
significant. This could 
be due to the presence 
of artifacts or low PD-L1 
membrane staining with 
cytoplasmic positivity 
(blush).

Ki6753 Current guidelines 
for assessing Ki-67 
recommended manual 
counting from a printed 
image that includes at 
least 500 neoplastic cells 
from tumor hotspots. 

Review including 
752 Pancreatic 
Neuroendocrine 
Neoplasms: G1 (55.3%), 
G2 (40.6%) and G3 
(4.1%).

The pooled correlation 
estimate was 0.94 (95%CI: 
0.83–0.98; I2 = 24.15%). 

Risk of counting 
dividing non-neoplastic 
“contaminating” cells 
(endothelial cells, 
lymphocytes) and 
other brown pigment 
(hemosiderin).

Higher tumor grade 
generated due 
to overcounting 
“contaminating” cells or 
artifact. 
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