

Supported by:

American Association for Cancer Research American Society of Clinical Oncology Susan G. Komen

GLOBAL HARMONIZATION OF DRUG DEVELOPMENT Richard Pazdur, MD; FDA OCE Prudence Scott, MD; Medex Consulting Francesco Pignatti, MD; EMA

PANEL THREE: OPTIMIZATION OF EXPLORATORY RANDOMIZED TRIALS

LISA LAVANGE, PHD FDA

Panelists

- Lisa LaVange, PhD; FDA
- Eric Kowack, MS, MBA; Ignyta
- Amy McKee, MD; FDA
- Cyrus Mehta, PhD; Cytel
- Richard Simon, D.Sc; NCI
- Rajeshwari Sridhara, PhD; FDA
- Yanping Wang, PhD; Eli Lilly & Co.

Optimization of Exploratory Randomized Trials

Lisa M. LaVange, PhD Director, Office of Biostatistics CDER, FDA

Friends of Cancer Research Annual Meeting November 16, 2016

Background

- Recent oncology research

 new, highly effective therapies
 - May show large treatment effects early in development
 - Need to speed these new therapies to market while also ensuring sufficient rigor to allow regulatory scrutiny
- Specific challenges include:
 - Lack of planning in certain aspects of the trial can make results difficult to interpret,
 e.g., multiple looks at the data, multiple endpoints
 - Early evidence of effect may be seen in secondary endpoints, e.g., overall survival
 - Results can negatively impact ability of the next, larger pivotal trial to enroll

Session Objectives

- Better understand the problem through some recent examples
 - Focus is on early randomized trials designed to inform sponsors on a go/no-go decision
 - Options in reaction to exceptional results include trial expansion to determine if benefit is maintained or submission of data while possibly initiating pivotal trial
- Discuss options for FDA in interpreting early trial results
 - Are there statistical methods that can be applied post hoc to alleviate problems incurred with looser/unknown operating characteristics of early trials?
- Discuss options for sponsors to better plan for the possibility of exciting results in early trials
 - With care to not impede research by placing too many requirements on early trials

AMY MCKEE, MD FDA

Go/No-go Trials Supporting Approval: Case Studies

Amy McKee, M.D.

Deputy Office Director (acting)

Office of Hematology and Oncology Products

OND/CDER/FDA

Issue

- Small, activity-estimating, **randomized** trial reads out with unexpected results, perhaps in secondary endpoint
- Statistical plan written with less restrictive operating characteristics typical of phase 2 trial
- Regulatory conundrum: what to do with a marketing application based on this type of trial?

www.fda.gov

Case study #1: Olaratumab (LartruvoTM)

- Human Anti-PDGFRα Monoclonal Antibody
- Small, randomized phase 1b/2 trial (JGDG)
 - Phase 2 portion randomized as add-on versus standard therapy in first-line setting
 - 133 patients with advanced STS not amenable to curative surgery/radiation
 - Primary endpoint: PFS (2-sided alpha=0.2)
 - Secondary endpoint: OS

JGDG Trial Design

Stratification factors:

PDGFR-α expression Prior lines of treatment Histology ECOG PS

130 Patients with Advanced STS

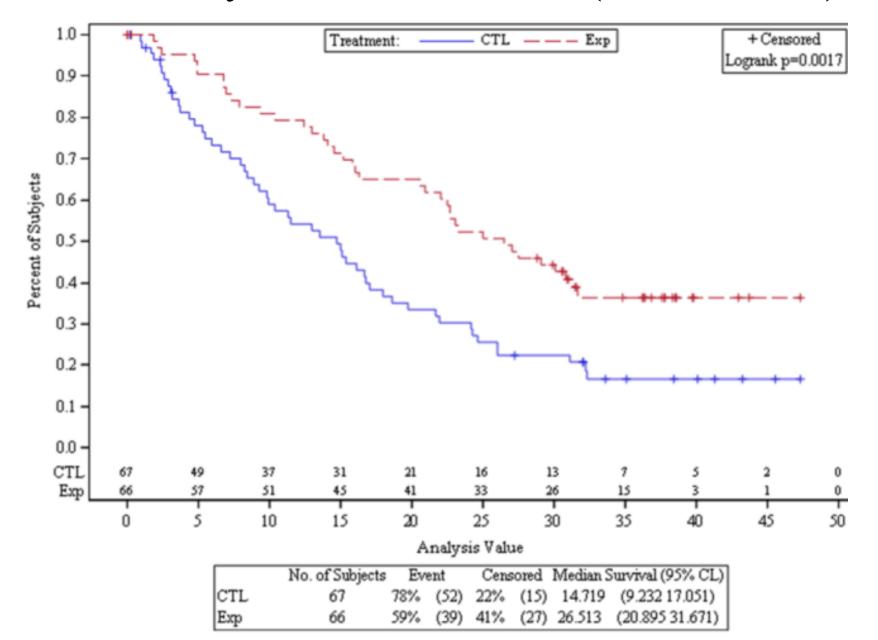
Randomize 1:1

1° endpoint: PFS

Olaratumab 15 mg/kg day 1 & 8 Doxorubucin 75 mg/m² day 1

Treat x 8 21-day cycles

Olaratumab 15 mg/kg day 1 & 8


Doxorubucin 75 mg/m² day 1

Treat x 8 21-day cycles

Disease evaluations: every 6 weeks x 4 then every 12 weeks

Case study #1: Olaratumab (LartruvoTM)

Case study #1: Olaratumab (LartruvoTM)

	Olaratumab + Doxorubicin N=66	Doxorubicin N=67	p-value
PFS			
Median (months)	6.6 months [95% CI: 4.1, 8.3]	4.1 months [95% CI: 2.8, 5.4]	
Hazard Ratio	0.67		0.06*
OS			
Median (months)	26.5 months [95% CI: 20.9, 31.7]	14.7 months [95% CI: 9.2, 17.1]	
Hazard Ratio	0.46		0.0004

^{*2-}sided alpha=0.1999

Case study #2: Lenvatinib (Lenvima®)

- Small molecule tyrosine kinase inhibitor against VEGFR1, VEGFR2 and VEGFR3
- Small, randomized phase 1b/2 trial
 - Phase 2 portion andomized 1:1:1 to lenvatinib +
 everolimus, everolimus alone, or lenvatinib alone
 - 153 patients with renal cell carcinoma in second-line setting
 - Primary endpoint: PFS
 - Secondary endpoint: OS

Trial Design

Stratification factors:

Hemoglobin

Corrected serum calcium

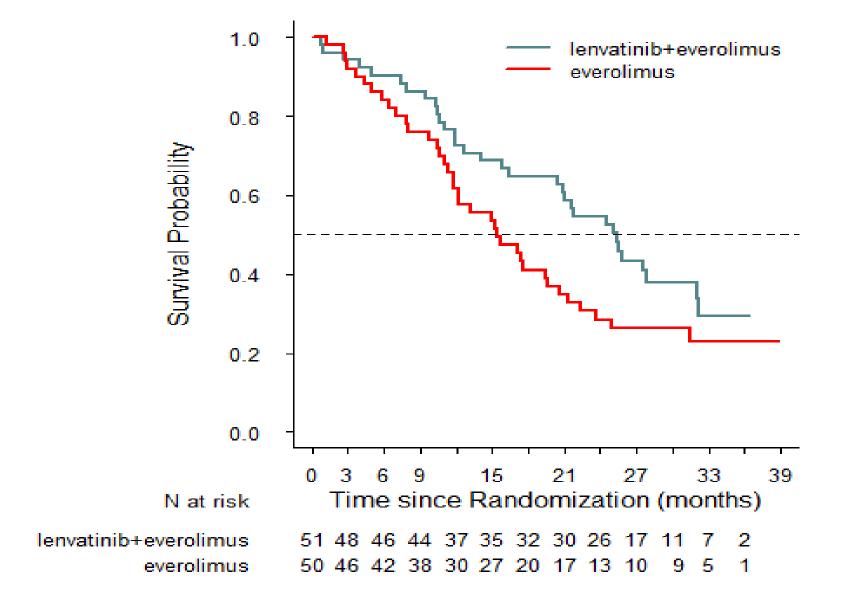
150 Patients with Advanced STS

Randomize 1:1:1

Lenvatinib 24 mg daily + Everolimus 5 mg daily

Disease evaluations: every 8 weeks

Everolimus 10 mg daily


Lenvatinib 24 mg daily

1° endpoint: **PFS**

Treat to PD, unacceptable toxicity, consent withdrawal

Case study #2: Lenvatinib (Lenvima®)

Case study #2: Lenvatinib (Lenvima®)

	Lenvatinib + Everolimus N=51	Everolimus alone N=50	Lenvatinib alone N-52
PFS			
Median	14.6 months	5.5 months	7.4 months
Hazard Ratio vs evero alone	0.37* [95% CI: 0.22, 0.62]		0.57* [95% CI: 0.36, 0.91]
OS			
Median	25.5 months	15.4 months	19.1 months
Hazard Ratio vs evero alone	0.67* [95% CI: 0.42, 1.08]		0.80* [95% CI: 0.50, 1.27]

^{*}p-values uninterpretable due to lack of pre-specified multiplicity adjustment

Conclusions

- Both olaratumab and lenvatinib received approval
- How can we prospectively design Phase 2 trials potentially to be both go/no-go and registration trials?

RICHARD SIMON, D.SC NCI

Bayesian analysis of unexpected survival "significance" in a randomized phase II trial Richard Simon, D.Sc.

- O Many phase II trials are randomized because:
 - New drug is combined with standard regimen
 - O Evaluation of progression free survival requires control group
 - O Toxicity better assessed with control group

Differences Between Phase III and Randomized Phase II

	Phase II	Phase III
Primary endpoint	Progression-free survival Response rate	Survival
Sample size	Small - moderate	Large
Significance threshold	0.10 1-sided	0.05 2-sided
Analysis	Not-blinded	Blinded
Analysis plan	Flexible	Pre-specified

Surprises in RCT Outcomes

- O Treatment difference for secondary endpoint
 - O When OS is the secondary endpoint
- Treatment difference for subset of patients when there is no overall difference
- O Treatment difference for a subset of clinical centers
- O Un-expected serious toxicity from a list of examined toxicities

Some Problems With p Values for Data-driven Hypotheses

- The interpretation of p value as false-positive error requires prespecification of hypothesis
- O Proper calculation of p value depends on sampling plan which may have been flexible or data driven; not fixed sample size as assumed
- O Same p value calculation for primary as for 10 secondary hypotheses. Only way of penalizing is by multiplicity correction.

Some Problems With p Values for Data-driven Hypotheses

O Based on null hypothesis of no treatment effect; does not reflect clinical significance

Why a Bayesian Model?

- O Depends on data at analysis, not on data at earlier analyses
- O Provides direct method for taking account of the fact that the outcome was for a secondary endpoint
- O Can take into account clinical significance

Model

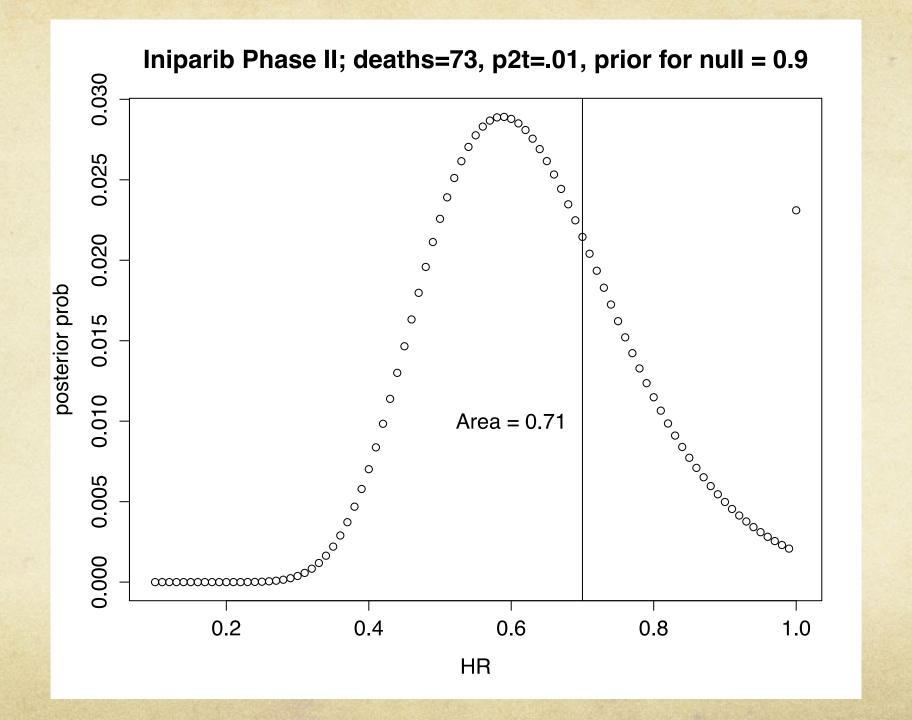
- δ = log hazard ratio for survival of patient receiving test treatment T relative to survival of patient receiving control C
- O Hazard (t) = risk of death in interval (t, t + ε) given that the patient is alive at time t
- O Proportional hazard models assume that the hazard ratio is the same at all times t.

Model

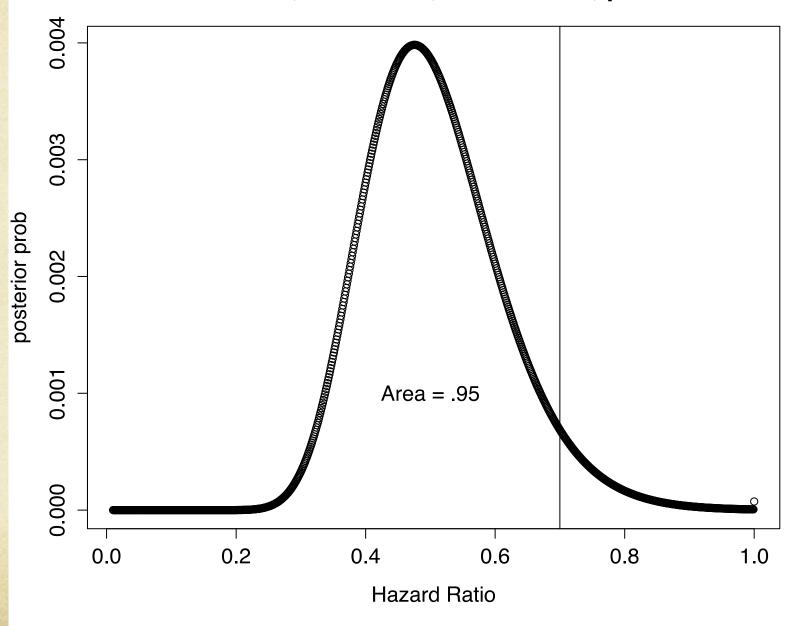
- O hazard ratio = 1 means no treatment effect
- hazard ratio = 0.75 or 0.70 means there is a minimally clinically significant treatment effect
- hazard ratio ≤0.75 or ≤0.70 means that there is a treatment effect that is at least minimally clinically significant
- O The true hazard ratio is unknown. The clinical trial provides us some information about it.

Model

- O Using the data from the clinical trial, we would like to compute the probability that hazard ratio ≤0.75 or 0.70
- O Since it uses the data from the clinical trial, it is called a posterior probability
- O In order to compute the posterior probability, we have to specify our prior probability about the hazard ratio


- Our prior belief about the hazard ratio is not a number; it is a specification of possible hazard ratio values and strengths of belief we hold for those numbers.
- O People with very strong prior beliefs that hazard ratio=1 will need very strong evidence to change their beliefs

- O If the clinical trial were a phase III trial being conducted because previous phase II trials indicated that the test treatment was effective, our prior belief that the hazard ratio =1 might be about 50% or less.
- For a phase II trial being planned to evaluate whether the treatment has an effect on PFS, a "surprising result" on OS means we have a greater prior belief that the hazard ratio for OS = 1.
- For our calculations, we take the prior probability that the hazard ratio = 1 as 0.90


- With this Bayesian model, we have placed the rest of the prior probability about the hazard ratio over the entire region ≤ 1 using the negative part of a Gaussian distribution N(0, τ) for log(hazard ratio).
 - We have found that the results are robust with regard to the specification of the standard deviation τ .

To Compute the Posterior Probability Distribution of the hazard ratio

- O Specify the estimated hazard ratio based on the clinical trial data
- O Specify the number of total deaths observed in the final analysis of the clinical trial
 - The sample variance of the observed log hazard ratio equals 4/total deaths
- O Specify your prior beliefs about the OS hazard ratio
 - O Prior probability hazard ratio = 1 (0.90)
 - Standard deviation τ of distribution of log hazard ratio (1)

Relationship of Nominal p value for OS to Posterior Probability of Clinical Significance

# events	p _{2t}	Posterior Probability	
		Hr ≤ .70	Hr ≤.75
25	.05	.75	.81
	.01	.88	.91
	.001	.96	.97
	.0001	.99	.99
50	.05	.66	.75
	.01	.83	.89
	.001	.95	.97
	.0001	.98	.99
100	.01	.71	.82
	.001	.89	.95
	.0001	.96	.98

FRIENDS ANNUAL MEETING

YANPING WANG, PHD ELI LILLY & CO.

FRIENDS ANNUAL MEETING

CYRUS MEHTA, PHD CYTEL INC

Friends of Cancer Research Annual Meeting

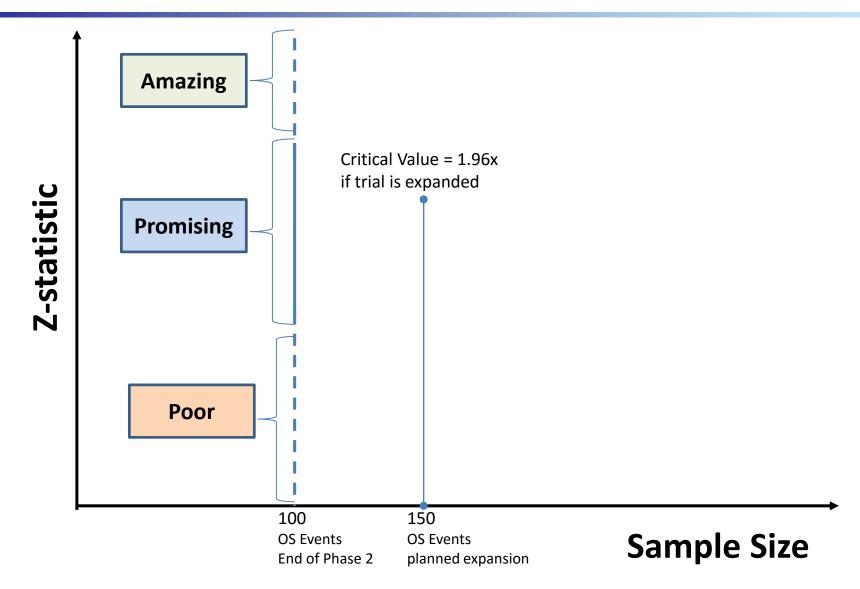
Panel 3: Optimization of Exploratory Randomized Trials

Cyrus Mehta, Ph.D.

Cytel Inc

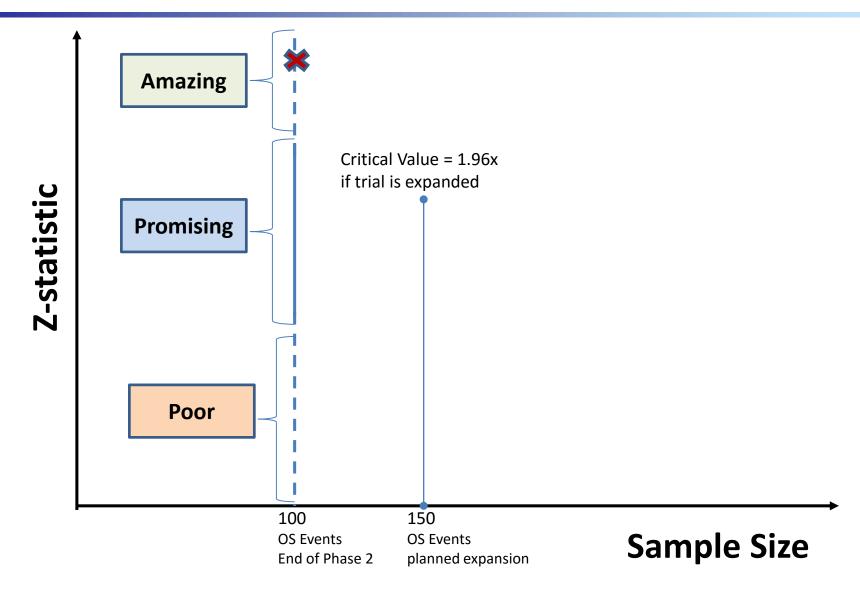
and

Harvard TH Chan School of Public Health

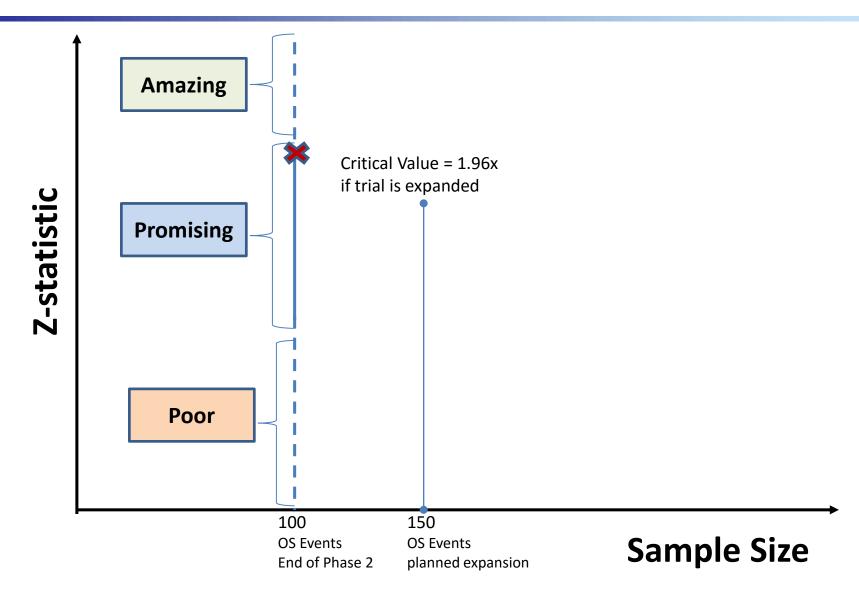

November 16, 2016, Washington DC

Making provision for unexpected results in Phase 2 trials

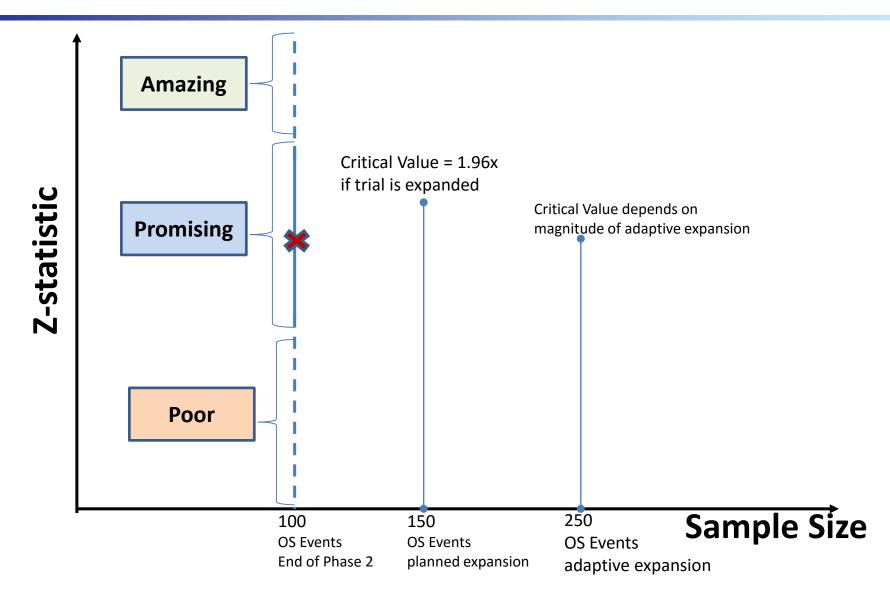
- Suppose a phase 2 oncology trials shows unexpectedly strong results in OS
- Depending on the strength of evidence and quality of the data it may be possible to:
 - File a regulatory submission (exceptional case)
 - Expand the trial with additional patients and follow-up (very promising case)
- What minimum design-time pre-specification will permit trial expansion without undermining statistical integrity?



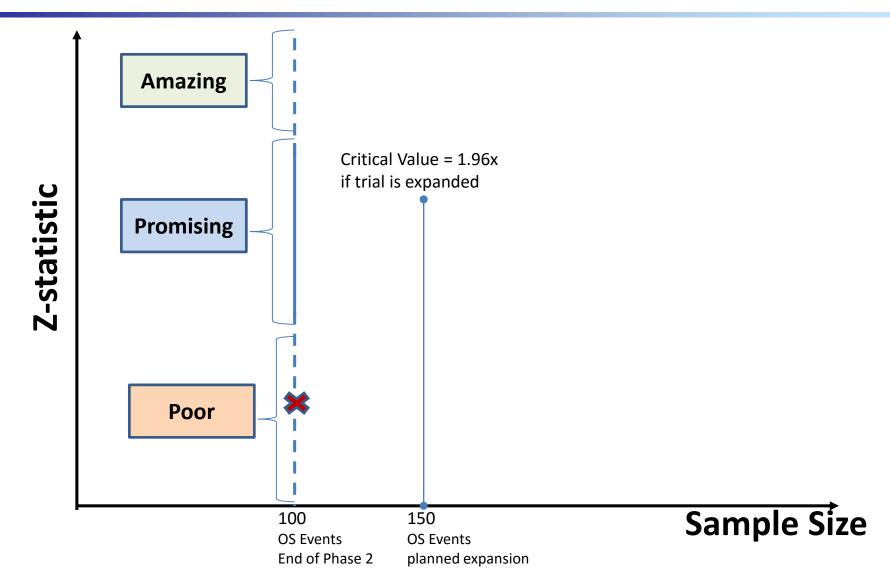
Basic Phase 2 Design with Provision for Expansion if Results are Promising



Case 1: Amazing result obtained. Stop trial and submit



Case 2: Very promising result obtained. Continue to planned expansion



Case 3: Promising result obtained. Adapt sample size beyond planned expansion

Case 4: Poor result obtained. Stop trial without going to planned expansion

FRIENDS ANNUAL MEETING

Supported by:

American Association for Cancer Research American Society of Clinical Oncology Susan G. Komen