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Executive Summary 
Accurate and consistent tumor measurement is fundamental to evaluating treatment response in 
oncology clinical trials. For more than 25 years, Response Evaluation Criteria in Solid Tumors (RECIST) 
has provided a practical and widely adopted framework for these assessments, however, there are 
limitations. Rapid advances in artificial intelligence (AI) offer an opportunity to modernize tumor 
response assessment. AI-enabled tumor assessment tools can detect, segment, track, and quantify 
tumors across the entire body with potentially greater consistency and improved biological detail. 

To realize this potential in drug development, the field must converge on clear standards for how 
AI-enabled tumor assessment tools are used, validated, and interpreted. Key questions include 
what is being measured, how results should be compared across tools, and how novel endpoints 
should be defined and qualified for regulatory use, particularly within pathways such as the U.S. 
Food and Drug Administration’s Accelerated Approval program, where reliable early indicators of 
benefit are essential. 

To drive alignment, Friends of Cancer Research (Friends) convened a multi-stakeholder working 
group to evaluate the current landscape of AI-enabled tumor assessment tools and propose a 
stepwise roadmap for integration into clinical trials. This white paper outlines: 

• Limitations of current imaging-based endpoints and opportunities to improve upon RECIST 

• Emerging AI-driven approaches, including enhanced RECIST, radiomics, volumetric analysis, 
and growth kinetics 

• Necessary components of a framework to validate a novel AI-imaging based endpoint as an 
early endpoint, including outstanding questions for defining the endpoint and considerations 
for a meta-analysis 

By advancing and aligning on methodological standards, the oncology community can enable AI-
enabled tumor assessments to supplement, and in some cases surpass, traditional measurement 
approaches in clinical trials. This shift has the potential to improve endpoint precision, reduce trial 
timelines and costs, and ultimately accelerate patient access to safe and effective therapies. 

  



2 
 

Authors  
Hillary Andrews, Friends of Cancer Research 

Trishan Arul, Picture Health 

Felix Baldauf-Lenschen, Altis Labs 

Surabhi Bajpai, AstraZeneca 

Vipul Baxi, Amgen Inc. 

Ariel Bourla, Johnson & Johnson 

Lauren K. Brady, Genmab 

Nathaniel Braman, Picture Health 

Ana Centelles Coll, Quibim 

Stephane Champiat, MD Anderson 

Andrea Corsi, radiomics.bio 

Chong Duan, Pfizer, Inc. 

Martin J. Edelman, Fox Chase Cancer Center 

Andrea Falkoff, Medidata Solutions 

Paul Galette, Pfizer, Inc.  

Gregory Goldmacher, Merck and Co., Inc. 

Joel Greshock, Johnson & Johnson 

Diederik J. Grootendorst, Bristol Myers Squibb 

Paul Hérent, Raidium  

Erich Huang, The National Cancer Institute  

Ohad Ilovich, Amgen Inc. 

Ana Jimenez-Pastor, Quibim 

Alexander Lazar, The University of MD Anderson 
Cancer Center 

David Leung, Daiichi Sankyo Inc. 

Sophie Loizillon, Guerbet 

Michael T. Lotze, University of Pittsburgh 

Jen-Tang Lu, Vysioneer 

Léo Machado, Raidium 

Chris Martersteck, Friends Advisory Advocate 

Ross McCall, Onc.ai 

Jon McDunn, Project Data Sphere  

Mike Montalto, Amgen Inc. 

Andrea Myers, Novartis  

Jayant Narang, Takeda Pharmaceuticals Inc. 

Sarthak Pati, LivAi Inc  

Nicolas Pecuchet, 3DS Dassault Systèmes 

Ted Pellas, GSK 

Kai Qu, Amgen Inc. 

Bharath Ramakrishna, Voiant 

Fabian Rengier, Novartis 

Lia Ridout, Friends Advisory Advocate 

Marc-Michel Rohe, Guerbet 

Lawrence Schwartz, Memorial Sloan Kettering 
Cancer Center 

Alain Silk, Tempus AI 

Chiranjiv Singh, Tempus AI 

Pallavi Tiwari, LivAi Inc. 

Pedro A. Torres-Saavedra, The National Cancer 
Institute  

Sarah Vizel Genco, Quibim 

Wim Vos, radiomics.bio 

Yu-Shan Yang, Vysioneer 

Ozlem Yarbidi, Formerly Takeda Pharmaceuticals 
Inc. 

Seok Yeong Kim, MERIT CRO 

Shinji Yue, MERIT CRO 

Binsheng Zhao, Memorial Sloan Kettering Cancer 
Center  

  



3 
 

Table of Contents 

Introduction ........................................................................................................................................................................................................ 4 

The History of RECIST and Current Challenges .......................................................................................................................................... 5 

Oversight Considerations ................................................................................................................................................................................. 6 

Approaches to Assessing Tumors ................................................................................................................................................................. 6 
AI-Enhanced RECIST .............................................................................................................................................................................. 7 
Other Uses of AI-Enabled Tumor Assessment Tools .............................................................................................................................. 8 

Uses for Tumor Assessments in Clinical Trials ........................................................................................................................................ 10 

Establishing Novel AI-Enabled Tool Outputs Clinical Trial Endpoints .................................................................................................. 10 
Determining COU ................................................................................................................................................................................ 11 
Defining the Endpoint ......................................................................................................................................................................... 11 
Meta-Analysis ConsideraFons ............................................................................................................................................................ 12 

Conclusions ..................................................................................................................................................................................................... 13 

References ....................................................................................................................................................................................................... 14 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



4 
 

Introduction 
Novel artificial intelligence (AI)-enabled approaches for assessing tumor lesions have the potential to 
transform treatment response evaluation, especially in clinical trials, where accurate and consistent tumor 
measurement is essential. For over 25 years, Response Evaluation Criteria in Solid Tumors (RECIST) has 
served as the standard framework for solid tumor measurements. While widely adopted and useful, RECIST 
has well-recognized limitations, including its reliance on manual, inconsistent, one-dimensional 
assessments of a limited number of lesions—an approach that can overlook biological complexity and 
introduce variability. Novel AI-enabled tumor assessment tools* analyze tumors in more nuanced and 
multidimensional ways, enabling a new level of comprehensiveness, quantitation, and consistency that may 
supplement and surpass human capabilities.  

Before broadly incorporating AI-enabled tumor assessment tools into clinical trials or using their outputs 
for clinical decision-making, identifying the setting, harmonizing the approach, and defining how to interpret 
the tool outputs are necessary to promote consistency across trials, build credibility, and enhance 
transparency. Clinical trial designs that support regulatory decision-making require analysis of accuracy 
and reproducibility to realize the tools’ promise and ensure acceptability. For novel tool outputs, the field 
must first agree on key definitions including, but not limited to, what is measured, how AI-enabled tools 
perform assessments, what the output represents in respect to clinical implications, and the circumstances 
in which its use is clinically appropriate. 

Friends of Cancer Research (Friends) established a working group of experts to provide a landscape 
assessment of AI-enabled tumor assessment tools, including their current and emerging applications within 
oncology clinical trials. The outputs from these tools hold potential for decision-making in a variety of 
clinical trial contexts including go/no-go decisions, dose-finding, and ultimately, as early endpoints for the 
U.S. Food and Drug Administration’s (FDA) Accelerated Approval Pathway. For our discussions, we consider 
the “tool” to be the product that measures the radiographic image including any analysis (i.e., the assay) 
and the “tool output” as the resulting information (i.e., the biomarker). The tool output is used to understand 
how the biomarker changes in response to treatment (i.e., the endpoint). We consider how tool outputs 
could be incorporated as early endpoints in clinical trials, as this use case requires the most evidence. Other 
Friends-led projects have demonstrated the importance of consistency in assessment approaches, shared 
reference datasets, and collaborative validation when developing and evaluating new tools and endpoints, 
setting the stage for the current work.1,2  

We explore how novel technologies may enable more quantitative and consistent tumor assessments, 
emphasizing the need for collaboration and rigor before broadly integrating AI tools into clinical trials. Our 
hope is that these early efforts will enable consideration of a standard repertoire of tumor assessment tools 
and their corresponding outputs that could be used to implement and evaluate other exploratory imaging 
biomarkers in the future. Ultimately, we intend to provide a framework for stepwise adoption and eventual 
standardization of imaging-based endpoints across studies and sponsors, enabling objective insights from 

 

*The term AI-enabled tumor assessment tools was selected by the working group to describe the tools that 
assess radiologic images and provide measurements that support an understanding of tumor dynamics. 
The term AI-enabled tools is also used. Principles incorporated throughout can also be considered for 
quantitative approaches for measuring tumors that may not incorporate AI. 
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early-phase trials through regulatory decision-making, including late-phase approval pathways such as 
Accelerated Approval.  

The History of RECIST and Current Challenges 
As clinical cancer research increased in the last century, growing interest in comparing outcomes across 
trials underscored the need for a standardized framework to consistently measure and report tumor 
changes. During the 1980s, the World Health Organization (WHO) published a series of guidelines describing 
bidimensional assessment of tumor measurements. Groups, including the nascent U.S. National Cancer 
Institute’s (NCI) cooperative groups, modified the WHO criteria, which led to a lack of standardization and 
made it difficult to compare results across studies or interpret tumor shrinkage as a reliable indicator of 
clinical benefit. In response, the European Organisation for Research and Treatment of Cancer (EORTC), the 
NCI, and the National Cancer Institute of Canada (NCIC) collaborated to develop RECIST as a unified 
approach to simplify and standardize tumor measurements.3 RECIST was rapidly adopted by academic 
researchers, NCI’s cooperative groups, and regulatory agencies, and later refined to address emerging needs 
in cancer research as RECIST v1.1.4 More recently, Immune-related RECIST (iRECIST) was developed to 
evaluate atypical response patterns often observed with immunotherapies;5 however, it has not been used 
as a formal endpoint in registrational trials.  

While RECIST is a standardized basis for defining endpoints such as objective response rate (ORR) and 
progression-free survival (PFS), limitations exist. RECIST v1.1 focuses on up to five target lesions 
representative of all involved organs per patient and uses unidimensional measurements. These decisions 
were originally made for pragmatic reasons, such as ease of implementation and reduced variability among 
human readers. However, measuring only a sample of lesions, rather than all lesions, assumes that overall 
survival (OS) is determined by the behavior of the average lesion. This assumption is flawed because patient 
survival is limited by their most aggressive and/or treatment-resistant lesion, not the average. Another 
challenge is distinguishing treatment-related changes (i.e., pseudo-progression) from tumor growth. In 
some indications, unidimensional measurements per RECIST do not capture treatment effect as well as 
volume measurements.6 Moreover, the reliance on one-dimensional measurements, combined with the 
subjectivity of manual lesion selection and measurement,7 can limit the ability to fully and consistently 
capture tumor dynamics over time.  

While RECIST has been invaluable in enabling a standardized assessment approach for comparing results 
between studies of individual therapies, associated limitations have prompted growing interest in 
complementary or alternative approaches, such as outputs from emerging AI-enabled tumor assessment 
tools. These innovations offer the potential not only for improving efficiency and consistency of RECIST but 
also to support novel imaging-derived endpoints that may more accurately reflect overall disease burden, 
patient outcomes while reducing time investment of radiologists. The promise of these approaches must 
be systemically explored and validated prior to their use. As quantitative imaging advances, such methods 
may facilitate more comprehensive and objective assessments while improving reproducibility compared 
to RECIST.  

This evolution is particularly relevant in the context of the FDA’s Accelerated Approval Pathway,8 where early, 
reliable indicators of treatment benefit are critical for regulatory decision-making and timely patient access 
to promising therapies. If novel AI-enabled endpoints derived from routine medical imaging show stronger 
association with OS or can be assessed sooner than RECIST-based endpoints, trials may reach the same 
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conclusions with fewer participants or shorter timelines. Ultimately, the clinical trial process may become 
more efficient, bringing safe and effective drugs to patients faster, more rapidly eliminating ineffective 
therapies, and making better use of the existing approach to non-invasive routinely collected imaging data. 
Importantly, data and evidence are necessary to support the use of these tools in this context. 

Oversight Considerations 
For this review, we focus on tumor assessment in clinical trials for drug approval by FDA, rather than routine 
clinical practice. In clinical trials focused on drug safety and efficacy, tumor assessments support 
retrospective evaluation of treatment effect at the study level, whereas in clinical practice, they guide an 
understanding of individual patient responses and inform treatment decisions. Unlike clinical practice, trial 
tumor data may be analyzed after study completion to assess a drug’s overall effect. As a result, the risk of 
using a tool output to define an endpoint and understand a drug’s efficacy is much lower than the risk of 
using that same tool output to inform treatment decisions since the patients are not directly impacted.  

Generally, tools used to evaluate endpoints in clinical trials do not require FDA’s Center for Devices and 
Radiological Health (CDRH) clearance or approval (i.e., as a device). However, if the tool were independently 
validated and FDA-authorized, and its use in a clinical trial was within the authorized indications, drug 
regulators may have additional assurance when evaluating the tool’s performance and validity for endpoint 
measurement in clinical trials. Approaches to endpoint measurement should be discussed with the FDA as 
appropriate, prior to their use in clinical trials. 

Novel endpoints must be qualified within a specific context of use (COU) before they can be used as an 
early endpoint to support regulatory decisions for Accelerated Approval.9 There are three main pathways 
for qualification: 1) the Biomarker Qualification Program (BQP), part of FDA’s Drug Development Tool (DDT) 
Qualification Program; 2) collaborative group interactions with FDA’s Center for Drug Evaluation and 
Research (CDER); and 3) qualification within a specific drug development program. Tools should be 
adequately verified and validated to ensure they can reliably measure and support interpretation of the 
endpoint for various tumor types and treatment modalities. While our focus is on regulatory oversight in the 
U.S. by FDA, lessons learned can translate to other global regulatory authorities. 

To ensure their appropriate use in endpoint measurement, AI-enabled tumor assessment tool validation 
requires large, relevant, and reproducible datasets, along with a clear understanding of the tool’s role within 
upstream and downstream clinical workflows. The availability of large multi-modal datasets, such as the 
UK Biobank, The Cancer Imaging Archive, and the Radiological Society of North America (RSNA) AI 
Challenge Collection, make it possible for tool developers to build AI models for computational use cases. 
There may be potential to use these databases for tool validation, however, having clear rules for training 
versus validation is critical. Ongoing monitoring may be necessary to ensure continued safety and efficacy 
as patient populations evolve, and as the tool’s machine learning (ML) algorithms adapt or change over 
time. FDA’s guidance on AI/ML-based software as a medical device (SaMD) provides standards for 
evaluating these tools’ safety, effectiveness, and clinical impact and take ML into consideration.10 

Approaches to Assessing Tumors  
Multiple considerations are important before incorporating AI-enabled tumor assessment tool output into 
clinical trials for regulatory decision-making. Broadly, we need alignment on definitions, assessment 
approaches, data requirements, validation expectations, and appropriate clinical use. Additionally, education 

https://www.ukbiobank.ac.uk/
https://www.ukbiobank.ac.uk/
https://www.cancerimagingarchive.net/
https://www.rsna.org/artificial-intelligence/ai-image-challenge
https://www.rsna.org/artificial-intelligence/ai-image-challenge
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for patients, providers, and regulatory agencies is important to improve comfort with AI-enabled tools. To 
support this, recent FDA approvals of AI-enabled devices and increased use of AI by healthcare firms over 
time suggest increased adoption of AI.11,12 

Here, we propose a stepwise approach for introducing AI tools into clinical trials as technologies improve 
and stakeholders become more comfortable with their use. While the use of these tools in clinical trials 
does not necessarily require CDRH review and approval or clearance, we draw on concepts from CDRH 
regarding the development and testing of AI-enabled tumor assessment tools. This approach provides a 
useful structure for describing a stepwise incorporation of AI-enabled analysis tools into clinical trials, 
focusing on the level of risk as informed by a tool’s use in a clinical trial and its technological 
characteristics.13 These concepts help differentiate lower-risk applications, such as AI tools that support or 
confirm human measurements, from high-risk applications, such as tools that independently perform 
assessments used to determine trial endpoints.  

AI-Enhanced RECIST 
Introducing AI-enabled tools to perform RECIST measurements is a meaningful incremental step, 
maintaining a well-known paradigm and supplementing the measurements with potentially greater accuracy 
and reproducibility. Currently in registrational trials, a blinded independent central review (BICR) performs 
RECIST assessments to ensure objectivity and consistency across readers. Generally, a 2+1 paradigm is 
employed, in which two radiologists interpret and complete RECIST assessments independently. A third 
independent human reader resolves any discordant categorization through an adjudication process. 
Incorporating AI-enabled tumor assessment tools into individual points of this workflow may improve 
efficiency by automating lesion identification and measurement, reducing variability, and streamlining the 
adjudication process or eliminating it altogether.  

Objectivity is critical, as local readings can introduce bias and categorize patients on treatment arms as 
responders to prolong therapy or patients on control arms non-responders to enable crossover. One lower-
risk approach to incorporating AI-enabled tools is to provide AI-generated results to local radiologists as a 
reference, allowing them to review a tool’s results after reading the scan while retaining final decision-
making authority (i.e., human-in-the-loop). In this context, such tools should not be used for clinical decision-
making by the local radiologist as this might impact treatment decisions.  

The AI-enabled tools may provide outputs with improved consistency and could theoretically support the 
BICR process by replacing one or more of the human readers. Initially, the tools could include a human-in-
the-loop approach to support lesion identification or tracking, which would streamline the process by 
providing AI measurements subsequently checked by the radiologist. As performance of these tools and 
confidence in use of their results improves, an alternative approach would be to have AI-enabled tumor 
assessments replace one of the two primary readers and to engage the adjudicator only if the human and 
AI-enabled readings disagree. Defining clear criteria for when the AI can "graduate" to an independent reader 
to maximize efficiency will be critical, which can at least partially be accomplished by incorporating 
performance measures. 

While enhancing RECIST with AI has potential, using AI tools to improve tumor assessments warrants 
validation and alignment. One of the biggest software challenges is identifying, selecting, and segmenting 
tumors to align with RECIST. This process requires nuanced and subjective interpretation informed by 
human expertise, especially in abdominal/pelvic regions where the contrast between tissues can be limited. 
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How similarly AI-enabled tumor assessment tools measure RECIST is unknown. Friends leads the ai.RECIST 
Project, which aims to determine the level of agreement among AI-enhanced tools that use RECIST to 
measure the same dataset of images. 

Other Uses of AI-Enabled Tumor Assessment Tools 
Beyond supporting current standard tumor measurement, AI-enabled tumor assessment tools offer the 
potential to generate novel insights. By analyzing complex spatial and temporal tumor characteristics that 
may be imperceptible by humans, AI can uncover subtle biological signals, such as intra-tumoral 
heterogeneity, architecture, and growth dynamics. These types of features may provide earlier and more 
nuanced indicators of treatment response, as well as potential evidence of response. AI-enabled tumor 
assessments have the potential to transform imaging and provide biologically meaningful evidence to 
support drug development and regulatory decision-making. As assessments move away from data 
interpretable by humans towards features measurable only by AI tools, the amount of evidence required to 
demonstrate reliability and consistency increases. 

Tools should be appropriately validated to support the use of the information they provide, especially in 
case of “black-box” models lacking clear interpretable biological correlations.14 Initiatives like FNIH’s 
Advanced metrics and modeling with Volumetric CT for Precision Analysis of Clinical Trial results (Vol-
PACT), RSNA’s Quantitative Imaging Committee (QUIC), and the Quantitative Medical Imaging Coalition 
(QMIC) are working to scale, validate, and standardize novel methods and move toward broader adoption 
in clinical trial design and endpoint development. 

Radiomic Features 
AI-enabled radiomics enables quantitative assessment of macroscopic tissue architecture and dynamic 
tumor behavior through advanced feature extraction.15 The ability to perform radiomic analysis at large 
scale can only be accomplished with AI measuring techniques due to the time needed to segment each 
lesion, and/or its surrounding tissue microenvironment. Texture analysis captures variations in voxel 
intensity that characterize intratumoral and peritumoral heterogeneity, potentially indicating differences in 
cellular density, necrosis, or fibrosis. Radiomics can detect gradients in perfusion, oxygenation, or 
metabolism that drive progression and therapeutic resistance by analyzing spatial relationships within and 
around the tumor.  

When applied to longitudinal imaging, these features can track subtle structural and textural changes over 
time, offering early and quantitative insights into treatment response. Collectively, these multidimensional 
measures translate imaging data into a deeper understanding of tumor biology and the associated host 
response, which may enable the development of biomarkers that reflect dynamic changes in tissue 
architecture and ultimately, therapeutic effect.16 Some approaches include: 

• Characterizing tumor morphology (i.e. surface- and shape-related features) as well as local 
heterogeneity via textural representations 

• Defining tissue architecture (e.g., tumor vascularity using the Quantitative Vessel Tortuosity (QVT) 
Score)17  

• Predicting tumor infiltrating lymphocytes presence and location (e.g., inflamed, desert, or immune 
excluded)18 

• Distinguishing between viable and non-viable tissue (e.g., Fractional Tumor Burden (FTB) maps)19 

https://friendsofcancerresearch.org/ai-recist/
https://friendsofcancerresearch.org/ai-recist/
https://fnih.org/our-programs/biomarkers-consortium-vol-pact-phase-ii-advanced-metrics-and-modeling-with-volumetric-ct-for-precision-analysis-of-clinical-trial-results/
https://fnih.org/our-programs/biomarkers-consortium-vol-pact-phase-ii-advanced-metrics-and-modeling-with-volumetric-ct-for-precision-analysis-of-clinical-trial-results/
https://fnih.org/our-programs/biomarkers-consortium-vol-pact-phase-ii-advanced-metrics-and-modeling-with-volumetric-ct-for-precision-analysis-of-clinical-trial-results/
https://www2.rsna.org/timssnet/about/committee.cfm?c=01900908
https://qmic.org/
https://qmic.org/
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• Assessing the impact of lesion location, particularly adjacent to large vessels20 

Volumetric Assessments 
Many AI-enabled tools can provide volumetric assessments as a potentially reliable indicator of total tumor 
burden. Unlike unidimensional (e.g., RECIST) or bidimensional measurements (e.g., WHO criteria), 
volumetric assessments may provide more sensitive and biologically relevant information.21 There are two 
key mathematical reasons for this: 1) AI-enabled assessments can be rapidly produced for nearly all lesions 
in the body, thus providing a more accurate assessment of total tumor burden, and 2) AI can perform 
volumetric assessments efficiently, whereas manual volumetric assessments are extremely time-
consuming, tedious, and potentially variable. By enabling volumetric assessment of all lesions (i.e., total 
tumor burden), rather than selecting a set of target lesions, AI-enabled tools may better capture 
assessments of the most aggressive and treatment-resistant lesions that lead to worse outcomes (i.e., 
death). Some AI tools have already shown how volumetric measures can help reduce inter-observer 
variability and reduce the average measurement time.22 Moreover, volumetric measures may be more 
sensitive to changes in the lesion burden and may detect responders and non-responders at earlier time-
points. Morphological biomarkers such as surface irregularity may be considered as a prognostic or 
predictive factor.23,24  

To provide a clearer understanding of spatial heterogeneity, tumor volumes are sometimes analyzed in 
combination with radiomic features. While volumetric and radiomic assessments may provide more detail, 
whether this additional detail supports stronger associations with outcomes is yet to be determined. 
Furthermore, the location of lesions with respect to major neurovascular structures could also bring 
additional information into consideration, as is currently conducted routinely in the setting of primary 
pancreatic cancers.25,26 Despite these advances, there is a lack of standardization in the approach for 
measuring tumor volume, location, and total tumor burden. There are relatively nascent proposals for 
volumetric response criteria, for example, the RSNA Quantitative Imaging Biomarkers Alliance’s (QIBA) CT 
Tumor Volume Change for Advanced Disease (CTV-AD).27,28  

Tumor Growth Kinetics 
While imaging offers static snapshots of radiomic features or volume, growth kinetics reveal the dynamic 
processes underlying those changes, which can help distinguish meaningful biological effects from 
measurement noise or natural variability. Multiple kinetic models can translate changes in imaging-based 
assessments into biological growth signals like growth rate or doubling time.29 Kinetic approaches can 
support an understanding of whether a tumor is increasing, stabilizing, or decreasing. The potential to 
include quantitative kinetic endpoints into clinical trials could complement or refine categorical endpoints. 
As with the other approaches outlined here, agreement on the key characteristics of the approach, which 
need to be harmonized, and how to incorporate these measures into clinical trials for regulatory decision-
making all need to be considered. 

Additional Approaches Beyond Radiologic Assessment 
While this white paper focuses on radiological assessment of contrast enhanced CT/MRI images, it is 
important to acknowledge other approaches currently under consideration for assessing tumor response. 
Functional and molecular imaging modalities such as FDG-PET, PSMA-PET, spectral CT/dual-energy CT, and 
DW-MRI may enable earlier and more nuanced detection of tumor response by revealing metabolic and 
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physiological changes, which may even precede lesion detection or visible size reduction. In parallel, the 
emergence of liquid biopsy through analysis of circulating tumor DNA (ctDNA) and circulating tumor cells 
(CTCs), may offer dynamic insight into resistance mechanisms and disease progression that could be 
further enhanced if combined with radiologic assessments. The rise of neoadjuvant therapies has elevated 
pathological response assessment through measures such as pathologic complete response (pCR) and 
major pathologic response (MPR) as more direct indicators of residual disease and treatment efficacy. 
Together, these advances mark a shift from traditional, size-based RECIST assessments toward a more 
holistic, multimodal, and biologically informed framework that integrates imaging, pathology, and 
computational tools to better capture treatment response and guide personalized cancer care. 

Uses for Tumor Assessments in Clinical Trials  
The goal of early-phase clinical trials is to establish findings that support an understanding of a novel 
therapy’s safety, dosage, pharmacology, and preliminary efficacy. However, RECIST measurements are 
relatively coarse and may not capture subtle differences in tumor biology, meaning larger sample sizes are 
typically needed to detect meaningful changes. Because early studies are intentionally small by design, 
reliance on RECIST-based endpoints limits statistical power and complicates interpretation. Moreover, the 
association between RECIST-based endpoints and OS is weak, such that high stakes decisions are made 
based on poor inputs that lead to failures later in development.  

AI-enabled tumor assessment tools may allow for a deeper biological and morphological characterization 
of tumor response, enabling a more precise understanding of drug effects earlier in development, and 
ultimately supporting earlier decisions about the benefit/risk profile. AI-enhanced tumor assessment tools 
that measure full disease burden or use advanced anatomic assessments may provide more nuanced and 
biologically relevant outputs that more accurately delineate between patients who have a response. 
Additionally, baseline imaging could inform risk modeling by identifying patients at higher risk of early 
treatment discontinuation. Earlier and more informative response assessments may reduce development 
costs through fewer imaging sessions, earlier response stratification, and more efficient allocation of 
clinical trial resources. 

Late phase clinical trials are designed to confirm efficacy and safety in large patient populations and provide 
evidence for regulatory approval. If AI-enabled tools have greater consistency, sensitivity, and ease of use 
compared with manual RECIST measurements, they may ultimately help trials run more efficiently and 
generate richer data to inform regulatory decisions. RECIST-based endpoints (e.g., ORR and PFS) are often 
used as early or surrogate endpoints that are reasonably likely to predict a clinical benefit for Accelerated 
Approval. While PFS is associated with OS at the patient-level, trial-level associations are variable.30 AI-
enabled tools may provide outputs that have stronger associations with OS at the patient- and trial-level. 

Establishing Novel AI-Enabled Tool Outputs Clinical Trial Endpoints 
Using FDA’s evidentiary framework for drug development tools provides a general roadmap for qualifying 
novel biomarkers that can be considered for AI-enabled tumor assessments as clinical trial endpoints.9 It is 
critical to first define the unmet medical need, then the COU, a concise description of the specific 
circumstances under which the tool is proposed to be used in drug development and regulatory review, 
which will drive the level and type of evidence required to support its qualification. Although the tool could 
potentially be applied in multiple settings, it is essential to focus on a development setting where there is a 
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clear unmet need and a plausible impact on decision-making. Once a COU is established, the evidentiary 
framework further emphasizes understanding the data necessary to support qualification, including both 
analytical validation (i.e., demonstrating reliable and reproducible measurement performance) and clinical 
validation (i.e., demonstrating a robust relationship between the tool output and relevant clinical outcomes 
for the COU).  

Two examples of accepted early endpoints are pCR in breast cancer and minimal residual disease (MRD) in 
multiple myeloma. In both cases, structured collaboration between clinical researchers, cooperative groups, 
and the FDA helped generate the evidence needed for regulatory consideration. For pCR, the FDA convened 
a working group to systematically evaluate patient-level trial data using consistent and clearly defined pCR 
criteria, ultimately establishing its prognostic relevance in early-stage breast cancer.31 For MRD, the 
International Myeloma Working Group (IMWG) first developed a harmonized definition and standardized 
assessment framework,32 which enabled its prospective incorporation into clinical trials.33 Large-scale 
meta-analyses, including the EVIDENCE and I2TEAMM datasets, subsequently demonstrated a strong 
association between MRD response and long-term outcomes.34–36 In both breast cancer and myeloma, 
meta-analyses did not support qualification as a surrogate endpoint, which requires demonstration of both 
patient- and trial-level associations between the endpoint and long-term outcomes like OS.31,37 Despite this, 
public discussion at Oncologic Drug Advisory Committee (ODAC) meetings reinforced the strength of the 
evidence, ultimately supporting the use of these biomarkers as early endpoints to inform regulatory 
decision-making. 

These lessons from prior experience provide more practical considerations for developing endpoints using 
novel AI-enabled tools. Once the COU is established, it would be helpful to reach consensus on which output 
should be pursued as an endpoint. Once determined and then defined, the endpoint should ideally be 
incorporated prospectively into clinical trials to minimize missing data. For AI-enabled imaging tools, there 
may be opportunities to leverage existing imaging data from previously completed trials, since the sponsors 
prospectively define the timing and frequency of tumor assessment for RECIST assessments and that 
timing likely aligns with the requirements for a new AI-based endpoint.  

The sections below outline key questions to guide alignment on COU, endpoint definitions, and the 
associated meta-analyses. 

Determining COU 
COU should consider the BEST biomarker category and specific use in drug development.9 In the case of 
clinical trial decision-making, the AI-enabled tools would be used as a response biomarker. For the specific 
use case, consider: 

• Which areas have the highest unmet need/ would benefit from this novel endpoint? 

o Cancer type 

o Treatment modality 

o Cancer stage 

• Are AI-enabled tools trained in one setting vs. another? 

Defining the Endpoint  

1. Align the optimal approach for measuring tumor response to treatment.  
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o Is the approach focused on lesion-, organ-, or patient-level assessments? 

2. Validate the chosen approach. 

• Why is this approach the most appropriate approach for accurately assessing tumors in the 
specific COU?  

• How does the approach compare with alternative methods, including RECIST? 

• Is the approach reproducible within a single tool and across different tools? 

• Can tumor assessments be consistently applied across individual clinical settings?  

• How can consistency and comparability of tumor assessments across various tools be ensured? 

• Are there any other limitations to the approach that might impact its use in different contexts? 

3. Define the endpoint. 

• How is the endpoint defined and derived? Including, what is physically measured, how the tool 
evaluates the assessment, and how this information is reported. 

• What is the timing of images collection and how consistent does this need to be? 

• How critical is the quality and the anatomical coverage of the images acquired?  

• Is it necessary to have a cut point to determine responder vs. non-responder?  

o Traditionally, criteria such as RECIST rely on set cut points (e.g., a percentage change in 
tumor assessments) to classify patients as responders or non-responders. With new 
assessment techniques, especially those producing continuous scores, are strict cut 
points necessary? 

o If yes, what best practices guide determination of this cut point? 

o If not, how are continuous scores used to determine response? 

• How are “progressors” defined? Is this definition necessary if the endpoint is continuous? 

o How do we avoid excluding patients with 'pseudo-progression’ from trials due to apparent 
disease progression? 

o How do we account for variable times between the baseline (i.e., pre-therapy study), therapy 
initiation, and the first treatment assessment scan? 

o Can non-pharmacological interventions (e.g., radiotherapy, surgical excision) be considered 
instead of defining patients as "non-evaluable"? 

Meta-Analysis Considerations 

1. Identify dataset clinical relevance and characteristics. 

• What patient-level data from the clinical trial are necessary? Would defining minimum-viable data 
characteristics be useful for exploratory analysis versus regulatory submission? 

o How is quality data defined and assessed? 

o How can we ensure the data obtained meets these quality standards? 
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• What imaging protocol and scanner metadata are necessary to support reliable assessments? 
(Consider practical limitations on collecting extensive data in both clinical trials and routine 
practice.)  

2. Determine clinical trial characteristics. 

• How many trials and patients are needed for robust meta-analysis? Randomized control trials 
and/or single arm trials? 

o Prioritize trials with survival outcomes 

o Include clinical trials with negative results to reduce bias 

• Could the data be stored in a repository for future validation? If yes, how does this affect data 
needs and how can we structure the dataset to support both this meta-analysis and future 
analyses? 

3. Identify and select trials for inclusion in the meta-analysis.  

• What are potential risks for sponsors sharing data? 

o Consider concerns about re-adjudicating results - data could be anonymized, shared by 
drug class, or partially included. 

o How can we ensure patient consent allows for these analyses?  

o How can we update consent forms for future trials to allow for these analyses? 

4. Develop and execute an aligned statistical analysis plan. 

Conclusions 
AI-enabled imaging tools offer the potential to transform tumor burden and treatment response 
assessments in oncology clinical trials. By generating more comprehensive, quantitative, and reproducible 
assessments than traditional manual approaches, these technologies may provide earlier and more 
sensitive indicators of therapeutic activity, supporting more efficient drug development and regulatory 
decision-making. However, realizing this promise requires deliberate coordination to progress toward 
harmonized standards. 

Key areas for consensus include defining what is being measured, how tumor assessments are generated, 
how endpoints should be calculated and interpreted, and under what conditions AI-enabled tumor 
assessment tools can supplement or replace existing frameworks such as RECIST. Lessons learned from 
FDA guidance and prior qualification efforts demonstrate that robust validation depends on shared 
datasets, collaborative analyses, cross-tool evaluation, and clear methodological transparency. Importantly, 
previously completed clinical trials may provide opportunities to retrospectively analyze existing imaging 
data, accelerate development, and reduce barriers to early validation. 

By advancing this work collaboratively across stakeholders, including sponsors, technology developers, 
imaging experts, regulators, and the clinical research community, we can move toward a future where AI-
driven imaging biomarkers and tumor assessment tools are deployed consistently, transparently, and at 
scale. Such progress has the potential not only to modernize oncology trial endpoints but also to expand 
the evidence base for Accelerated Approval and other pathways, ultimately advancing timely access to 
promising cancer therapies for patients. 
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