

The Homologous Recombination Deficiency (HRD) Project

HRD Harmonization Project

BRCA BRCA PARP1 PARP1 Deat In cells with mutated Use of a PARPi causes the In normal cells, proteins like PARP1 and BRCA help BRCA, DNA repair is altered cell to recognize the repair DNA leading to genetic damage and go through cell death (apoptosis) instability and cancer

BRCA is involved in Homologous Recombination Repair (HRR)

There are other proteins besides BRCA involved in the HRR pathway that if altered cancer, may benefit from treatment with PARPi.

Identifying patients whose tumors foster these alterations, also called Homologous Repair Deficiency (HRD), will lead to improved response.

Currently, assays measure HRD differently.

HRD Harmonization Project

The Definition	The Problem	The Solution
Homologous recombination deficiency (HRD) is a complex biomarker that helps identify whether patients may respond to certain treatments.	Currently, there is no standardized way to define, measure, and report HRD.	A unique research partnership to develop alignment strategies among different methods for measuring HRD and aligning around its use as a biomarker in clinical care.
This type of biomarker has promise in identifying patients with certain cancers who are more likely to benefit from PARP inhibitors and additional DNA repair targeting drugs.	A few NGS-based HRD assays are currently available, and these use different approaches to measure HRD. But there is no agreement on what parameters contribute to the determination of a sample's HR status.	<i>Friends</i> has assembled a consortium of project partners from key healthcare sectors to address concerns about the lack of consistency in determining HRD status, its prognostic value, and its use as a predictive biomarker.

HRD Harmonization Project

Overall Goal: To harmonize the way HRD is defined, measured, and reported to better identify and care for patients who are most likely to benefit from targeted therapies.

Workflow	Phase 1 Discovery and Definition	Phase 2 Assay Alignment	Phase 3 Clinical Contextualization
Objectives	 To refine the way HRD is utilized To better understand how HRD calls are determined To propose common language around the use of HRD 	 To understand the level of variability across HRD assays To identify opportunities for harmonization To propose best practices for HRD assay alignment and use 	 To explore how disease context impacts association between HRD and clinical outcome To identify approaches for the development of clinical evidence to evaluate HRD
Approach	Developed a landscape analysis of HRD aimed to identify how HRD is used, define how HRD calls are made, and propose common language around the use of HRD.	Working through an analysis plan including multiple diagnostics companies to identify variability in HRD assays and opportunities for harmonization.	Report findings from Phase 2 for clinicians and patients, and develop an analysis plan to evaluate impacts of HRD testing on clinical efficacy.

Project Approach

HRD Harmonization Project

Do HRD assays report different HR statuses? If so, why might this variation exist?

• Describe the variation in HRD assays, then explore potential sources of variation

TCGA- In Silico Analysis

- 348 ovarian cancer files
- DNA Nexus deidentified files and shared with diagnostics developers
- Developers ran their HRD assays on in silico files
- NCI stats team compared assays

Patient Sample Analysis

- ~125 freshly sectioned ovarian cancer samples
- Fredrick National Laboratory will extract and distribute DNA/RNA
- Developers will run their HRD assays on samples
- NCI stats team will compare assays

We lack a "gold standard" for HRD – focus on observed variability in assays

Analysis Strategy Overview

