Panel 2 Identifying and Establishing the Role of Circulating Tumor DNA in Cancer Drug Development #FriendsAM18 Wifi: RitzCarlton CONFERENCE Password: fcr18 ## Panel 2 Participants **Moderator:** Geoffrey Oxnard, Dana Farber Cancer Institute - Darya Chudova, Guardant Health - Jamie Holloway, Patient Advocate - David Shames, Genentech, A Member of the Roche Group - Jean-Charles Soria, MedImmune - Julia Beaver, U.S. FDA - Reena Philip, U.S. FDA #FriendsAM18 # EXPLORING THE USE OF CIRCULATING TUMOR DNA AS A MONITORING TOOL FOR DRUG DEVELOPMENT Hesham Abdullah, Jeff Allen, J. Carl Barrett, Julia Beaver, Gideon Blumenthal, Darya Chudova, Leena Das-Young, Bruno Gomes, Jamie Holloway, Diana Merino, **Geoffrey Oxnard**, Reena Philip, David Shames, Jean-Charles Soria, Mark Stewart Friends of Cancer Research Annual Meeting November 13, 2018 ## Background - Circulating tumor DNA (ctDNA) refers to DNA shed by tumors when undergoing cell apoptosis and necrosis - ctDNA assays are minimally-invasive and convenient, and are increasingly well validated - Broadly, three potential applications for ctDNA assays - 1. Molecular characterization (at diagnosis of resistance) - 2. Cancer detection (screening or minimal residual disease) - 3. Cancer monitoring # IDENTIFYING AND ESTABLISHING THE ROLE OF CIRCULATING TUMOR DNA IN CANCER DRUG DEVELOPMENT **FOCUS: DISEASE MONITORING** #### **OBJECTIVES** Assess the current state of ctDNA as a monitoring tool Suggest best practices for the use of ctDNA as a monitoring tool Propose two potential opportunities for the operationalization of ctDNA in drug development Case studies Prospective data collection "ctDNA Pilot Project" Retrospective data collection "Virtual Data Repository" ## Serial genotyping of ctDNA in plasma In phase I dose escalation studies In phase II studies for evaluating to complement dose finding: treatment outcome: Yu et al. CCR, 2017 Raja et al. CCR, 2018 #### **Case Studies** Very little consistency across studies #### Table 1: Case studies and study parameters | Parameters/Study | Mok et al., Clinical Cancer
Research, 2015 ¹⁴ | Yu et al., Clinical Cancer Research,
2017 ¹⁵ | Raja et al., Clinical Cancer
Research, 2018 ¹⁶ | |-------------------------------|---|---|--| | Histology | Stage IIIB and IV NSCLC | Advanced NSCLC patients with disease progression after EGFR TKI treatment | NSCLC and UC | | # of patients | 305 | 93 | 100 (28 discovery, 72 validation)
and 29 (validation) from 2 differ-
ent studies | | Clinical trial | FASTACT-2 study | NCT02113813 | ATLANTIC and Study 1108 | | ctDNA/cfDNA | cfDNA | cfDNA | ctDNA | | Technology | Semi-quantitative—Cobas 4800
blood test (RT-PCR) | Quantitative—BEAMing PCR | Quantitative—NGS, targeted panel (Guardant 360) | | Gene | EGFR | EGFR | Gene panel (73 genes) | | Units | Copy/mL | % mutant EGFR cfDNA | Mean VAF | | Timepoints | Baseline, cycle 3 (~12 weeks) and progression (PD) | Baseline, cycle 2 | Baseline and 6 weeks-prior to 4 th treatment | | Median follow up
time | Not specified | Not specified | Ranged between 9-15 months depending on study | | Drug(s) being tested | Erlotinib (after gemcitabine/plati-
num) | ASP8273 (3 rd generation EGFR TKI) | Durvalumab (anti PD-L1) | | Clinical Response/
Outcome | ORR, PFS, OS | ORR | Tumor volume, PFS, OS | | Tube | "collected according to standard procedures" | n/a | K2-EDTA | | Timing of processing | "collected according to standard procedures" | n/a | n/a | Abbreviations: cfDNA, cell-free DNA; ctDNA, circulating tumor DNA; EDTA, ethylenediaminetetraacetic acid; *EGFR*, epidermal growth factor receptor; NGS, next generation sequencing; NSCLC, non-small cell lung cancer; ORR, objective response rate; OS, overall survival; PD, progressive disease; PD-L1, programmed death-ligand 1; PFS, progression free survival; RT-PCR, real time- polymerase chain reaction; TKI, tyrosine kinase inhibitor; UC, urothelial carcinoma; VAF, variant allele fraction. #### **Best Practices** - Standardized practices that will help improve consistency across studies - Consistency of ctDNA collection and reporting will help aggregate data from multiple studies #### Table 2: Best practices for the use of ctDNA in disease monitoring | Best Practice | Recommendations | | |----------------------------------|--|--| | Material collection | | | | Timing | Collection at cycle 1, day 1 (screening sample may not be representative) | | | | 2. Early collection after 2-4 weeks | | | | 3. Collection at the time of restaging scans | | | | 4. Collection at or after progression (prior to next therapy) | | | Amount of material | One 10ml tube is usually adequate for analysis | | | | Recommend collection of a second 10mL tube for future bridging studies | | | | Recommend saving the cell pellet to allow study of white
blood cells if needed. | | | Tube type | If site has capacity to spin down tubes locally within a few hours after collection, EDTA tubes would be adequate. Otherwise tubes including a DNA stabilization agent (e.g. Streck tubes) are preferred to allow delayed spinning of specimens | | | Detection platform
technology | Should be able to measure ctDNA changes quantitatively Recommend quantification of variant allelic fraction, which can be calculated across various assays (e.g. ddPCR, NGS) Platform should be validated to show optimal commutability against other assays (orthogonal approaches) | | | Analysis | Consider calculation of percent change from baseline, similar to approach used for tumor measurements in imaging Analysis should account for the possibility of mutations derived from clonal hematopoiesis. Sequencing of white blood cells can be useful for distinguishing this | | # Friends ctDNA multi-stakeholder consortium **Pooling data for shared learning** Prospective data collection "ctDNA Pilot Project" Retrospective data collection "Virtual Data Repository" # ctDNA Pilot Project: Monitoring therapeutic effect of immune checkpoint inhibitors - Prospective collection of ctDNA data in standardized manner - Ongoing or planned trials could include framework as part of their data collection strategy - ctDNA data will be aggregated for multi-study analysis #### Table 3: Friends ctDNA pilot project framework | Parameter | Proposed Pilot | |---------------------------------|--| | Patient population | Patients with advanced/metastatic disease | | Population size | As determined by the clinical trial or drug sponsor | | Drug class | Immune checkpoint inhibitors | | Trial phase | All phases | | Technology for ctDNA assessment | ddPCR or NGS gene panel | | Minimum Limit of Detection | 0.2-0.25% VAF | | Test tubes | If site has capacity to spin down tubes locally within a few hours after collection: EDTA. Otherwise tubes including a DNA stabilization agent (e.g. Steck tubes) | | Timepoints | Collection at cycle 1, day 1 (screening sample may not be representative) Early collection after 2-4 weeks Collection at the time of restaging scans | | | 4. Collection at or after progression (prior to next therapy) | | Median follow up | 6 months | | Diagnostic endpoints | Relative percent change from baseline | | Alterations (definition) | Mutations, insertions, deletions, amplifications, and fusions | | Clinical endpoints | Raw tumor size/volume, ORR and PFS and/or OS, if applicable (trial dependent) | | Adjustment factors | Age, gender, smoking status, baseline ECOG score, previous line of therapy, and histology | ### Virtual ctDNA Data Repository # Explore a framework for how to bring data together - Existing data - Prospective data Analyze data from multiple studies #### Table 4: Considerations for a virtual data repository | Issues | Questions | | |--------------------------------------|--|--| | | What is the minimum core set of data elements that sponsors
would feel comfortable sharing as part of a pilot project? | | | Core dataset | Should raw or analyzed data be uploaded to the repository? | | | | What kind of case report data on clinical response is neces-
sary? | | | Legal, ethical, and privacy concerns | Are there any legal, ethical, and/or privacy concerns for contributing data to a virtual repository? | | | Logistical concerns | | | | Data storage | Where would the data be stored? Would there be a maximum data storage value? Could this data be hosted on a cloud? | | | Data transfer | How would data be transferred/uploaded? | | | Blinding | Does the data need to be blinded? | | | Analytical opportunities | Will the data be analyzed as a meta-analysis, or could the data be combined and analyzed together? | | ## Friends ctDNA multi-stakeholder consortium #### Next steps: - 1. Friends will seek to develop a multi-stakeholder consortium: interested members of the academic, diagnostics, government, pharmaceutical, and patient advocacy communities should request to join the ctDNA multi-stakeholder consortium; - 2. The consortium will meet to discuss the feasibility of the initiatives discussed in this white paper; and - 3. The consortium will implement the optimal approach to advance our understanding of ctDNA use in drug development ## Panel 2 Participants **Moderator:** Geoffrey Oxnard, Dana Farber Cancer Institute - Darya Chudova, Guardant Health - Jamie Holloway, Patient Advocate - David Shames, Genentech, A Member of the Roche Group - Jean-Charles Soria, MedImmune - Julia Beaver, U.S. FDA - Reena Philip, U.S. FDA #FriendsAM18