

PANEL 1: CASE STUDIES: DATA COLLECTION AND APPLICATION OF RWE

Amy Abernethy, Flatiron Health (Moderator) Jane Perlmutter, Gemini Group Allen Melemed, Eli Lilly and Company Maria Koehler, Pfizer Oncology Sean Khozin, US FDA

Amy Abernethy, Flatiron Health

Meeting Goals

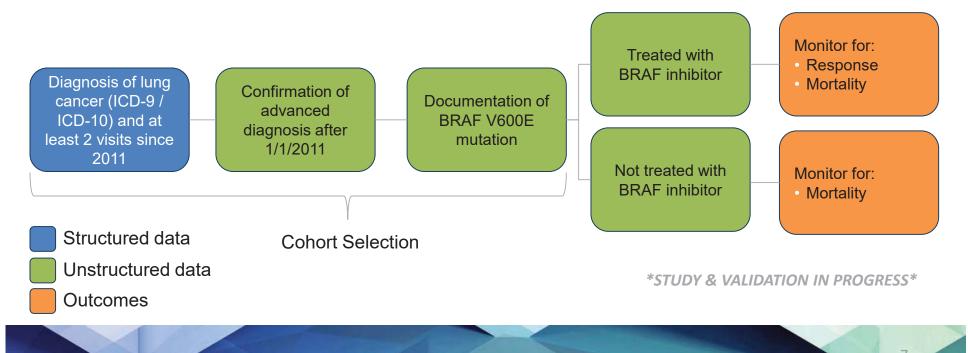
- Identify disease and drug candidates in oncology as potential case studies
- Develop strategies for optimal regulatory use of real-world evidence in oncology
- Outline potential pilots in oncology that could be used for clinical evidence generation to support regulatory decisions

Defining the Discussion

- **Real World Data (RWD)** Data collected from sources outside of conventional randomized controlled trials
 - Electronic health records (EHRs), randomized trial supplements, pragmatic clinical trials, patient registries, administrative claims, surveys, and mobile health-generated data (e.g., smartphones, wearables, social media)
- Real World Evidence (RWE) Evidence derived from RWD
 - Clinical research evidence summarizing the use, benefits and risks of medicines when prescribed in scenarios that fall outside the bounds of the classic clinical trial settings
 - Reflective of the heterogeneous patients seen in real world practice settings

Defining the Discussion

EXPLORE...


- Value of incorporating RWE into drug development
 - Supplementing post-market data collection
 - Decreasing costs and development timelines
 - Potential to reflect novel outcomes
 - Minimizing the number of patients exposed to a less efficacious therapy
- Requirements and considerations for RWE in drug development
 - Feasibility of data collection
 - Data quality concerns (e.g., missing information, non-systematic data collection)
 - Endpoints
 - Patient confidentiality and data security

Case Example: RWE for Label Expansion

Situation: Positive preliminary results were reported last August in the New England Journal of Medicine for vemurafenib's efficacy in some non-melanoma cancers

Objective: Explore the utility of Flatiron real-world data to support understanding of role of vemurafenib in NSCLC patients with BRAF V600E mutations

Case Example: RWE for Label Expansion

Leveraging real-world data for potential label expansion requires alignment on variables and endpoints that go beyond what is typically found in real-world data

	Key Questions	Context and Approach	*STUDY & VALIDATION IN PROGRESS*
	Real-World	Assessment of change in burden treatment with BRAF inhibitor, in	
Real-World r Discussion	Tumor Response (rwTR)	•	se, maximum response, and time to into the depth, timing, and duration of
Real- Disci		•	
to fo	Real-World	has been growth in the disease c	treating clinician concludes that there of interest
pproach	Progression (rwP)	 Distinct episodes are disease patient is assessed for progre 	e-specific time intervals in which the ession
A _I En		 Source information consider evidence, pathology, clinical 	ed includes radiology, laboratory assessment

Case Example: RWE for Label Expansion

The ability to **measure, track, and improve quality** is essential to leveraging real-world data to generate meaningful real world evidence. As RWE expands into new use cases, understanding the standards for quality and validating these methods will be critical.

Question	N	Question Type	Agreement
Does the patient have non-small cell lung cancer?	150	boolean	0.99
Does the patient have advanced lung cancer?	150	boolean	0.96
What is the date of initial diagnosis with NSCLC?	150	date	0.78
What is the date of diagnosis with advanced or metastatic NSCLC?	150	date	0.73
What was the patient's stage at initial diagnosis?	150	drop down	0.85
What is the patient's NSCLC histology?	150	drop down	0.95
What is the patient's smoking status?	150	drop down	0.93

Example: Inter-rater agreement for NSCLC disease characteristics

Note:

Date matching agreement currently based on exact date (agreement goes up by ~0.02 when allowing for agreement within 2-week window and by ~0.04 when allowing for agreement within 1-month)

RWE Proposals – Vision for the Future

Utilizing RWE with the intent of answering specific clinical questions and, when appropriate, informing product labels, in the following areas:

- 1. Expanding the safety profiles of a therapeutic
- 2. Identifying populations with enhanced benefit/risk for an already approved therapy to inform clinical practice
- 3. Piloting studies to determine the potential correlation between feasible real world measures (such as time to treatment switching) and more traditional clinical trial endpoints (such as time to progression)
- 4. Building evidence for a supplemental package to expand the indication profile for a therapeutic
- 5. Supporting efficacy results observed in clinical trial setting, particularly in areas of unmet medical need, when a new drug shows substantial clinical benefit. Real world studies that are able to support the preliminary magnitude of effectiveness in a larger cohort may be sufficient to serve as post-market confirmation of clinical benefit

Meeting Goals (Reprise)

- Identify disease and drug candidates in oncology as potential case studies
- Develop strategies for optimal regulatory use of real-world evidence in oncology
- Outline potential pilots in oncology that could be used for clinical evidence generation to support regulatory decisions

Jane Perlmutter, Gemini Group janep@gemini-grp.com

Why Is this Topic Important to Patients?

- Patients don't have the luxury of patience
- Patients in clinical trails are not representative of patients who are treated in all clinics
- Clinical trials have limitations (e.g., drug approval versus treatment optimization)
- Most patients would like to contribute to advancing medical knowledge even if they can't/don't participate in clinical trials

What are Patient Concerns?

- Loss of privacy/security
- Consenting
- Hoarding of data

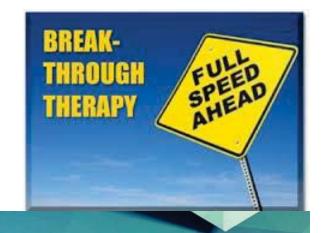
A Lucky Patient's Story

- June: Diagnosed with metastatic esophageal cancer
- July: Treated with two cycles of Oxiplatum and 5FU with no improvement; scheduled insertion of a feeding tube
- August: Approved to receive Ketruda through Merck's EAP; began treatment
- September: After two cycles of Ketruda began eating normally; had no side effects
- March: Had a repeat endoscopy

Lower Third of the Esophagus: Ulcer

Esophagus: Pertinent

Many Patients are Not so Lucky


- One year survival of metastatic esophageal cancer is <25%; five year survival <5%
- There are other cancers for which these therapies are likely to be beneficial, but
- Many patients don't have access to off-label drugs
- Not all patients will respond; but many likely will

• If we continue to do thing as we always have, It will waste many years and patient lives

Proposal

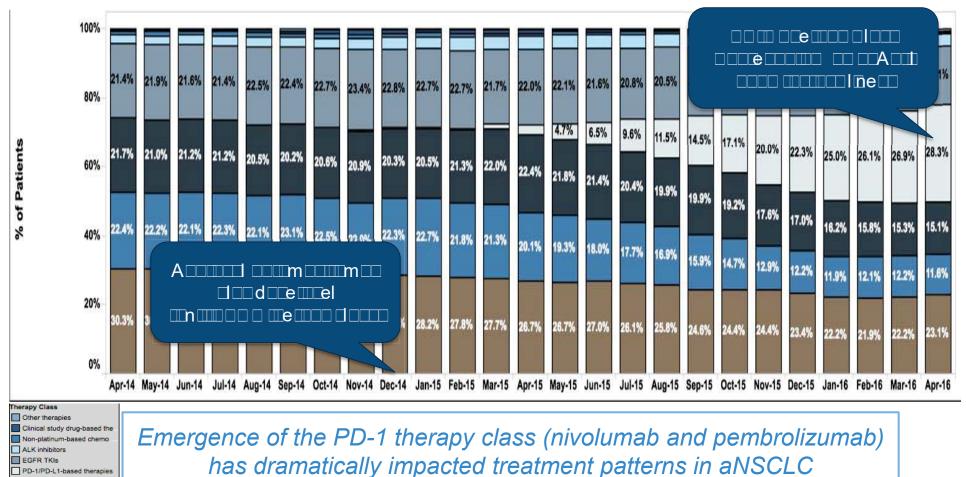
- Rapidly approve new indications for already approved breakthrough therapies (i.e. PD-1 inhibitors)
- Site of origin and biomarker agnostic
- Supplement clinical trial data with high quality RWE
 - Multi-organ completed trials
 - Ongoing trials
 - N of one trials
 - TAPUR, etc.
 - Off-label use, especially EAPs

Help Patients NOW!

- Determine from FDA
- What RWE will be acceptable for approval of new indications of breakthrough therapies (PD-1 inhibitors)
 Action! How much data will be required for a few of the most compelling cases
 - Determine from sponsors what data are already available
 - Report on progress at FOCR annual meeting in November

FLATIRON

Cyramza (Ramucirumab) Case Study


Allen Melemed, Eli Lilly and Company

Patient Share by Therapy Class

FLATIRON

Anti-VEGF-based therapies Single agent chemotherapies Platinum-based chemo comb

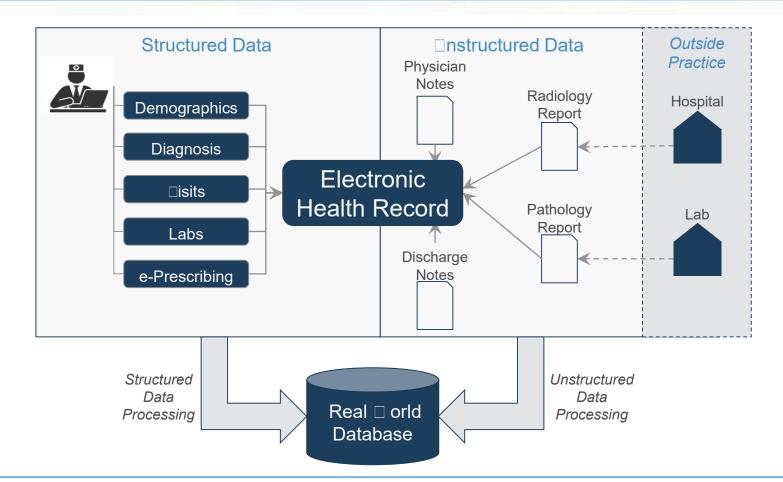
Objectives:

To describe patient characteristics, safety, real-world progression, response, and mortality in patients with advanced NSCLC receiving treatment with ramucirumab plus docetaxel (R/D) either prior to or following treatment with a PD-1 inhibitor (PD-1).

Specifically, this analysis will be designed to:

- Describe the demographics and clinical characteristics of patients in this cohort, including:
 - Stratification by patient subcohort of interest (e.g., histology, biomarker status, LOT)
- Describe the treatment sequencing of R/D, PD-1 and other therapies in this population
 - Lines of therapy
 - Treatments received before and after R/D among patients who received both R/D and PD-1

Source data


Continually aggregating real-world EHR dataset of 1.3M+ patients Data will be extracted from structured data as well as unstructured (free-text) records to increase quality and completeness of key variables

Data cutoff date

March 31, 2016

Source: <a>Delatiron Real <a>Delatiron orld Data

By accessing and processing the complete electronic health record, the Flatiron real world database significantly improves completeness and accuracy of key data variables

FLATIRON

Study design: Ramucirumab / PD-1 treatment sequencing

Patients diagnosed with □dvanced NSCLC since 2011 (**N** = 23,139) 51% of these patients are active as of December 2014 (Cyramza plus docetaxel approval)

□sage of a PD-1 inhibitor: Order or administration of nivolumab or pembroli umab **N** = 1,845

Completeness of record: Less than a ⊡0 day gap between advanced diagnosis date and structured first activity date N = 1,578

Cyram \Box a and a PD-1 inhibitor order/administration in distinct lines of therapy **N = 62**

Cyramza \rightarrow PD-1PD-1 \rightarrow CyramzaN = 40N = 23

Note: One patient, who received a PD-1 inhibitor followed by Cyram a followed by a different PD-1 inhibitor, was considered in both cohorts.

Data cutoff: March 31, 2016

FLATIRON

Baseline patient characteristics Ramucirumab / PD-1 cohort

	All	Cyramza $ ightarrow$ PD-1	PD-1 $ ightarrow$ Cyramza	
	N=63	N=40	N=23	
Gender:				
Female	26 (41.3%)	17 (42.5%)	9 (39.1%)	
Male	37 (58.7%)	23 (57.5%)	14 (60.9%)	
Group stage at diagnosis:				
Stage I-II	6 (9.52%)	4 (10.0%)	2 (8.70%)	
Stage III	13 (20.6%)	10 (25.0%)	3 (13.0%)	
Stage IV	43 (68.3%)	26 (65.0%)	17 (73.9%)	
Group stage is not reported	1 (1.59%)	0 (0.00%)	1 (4.35%)	
Histology:				
Non-squamous cell carcinoma	48 (76.2%)	33 (82.5%)	15 (65.2%)	
Squamous cell carcinoma	15 (23.8%)	7 (17.5%)	8 (34.8%)	
Smoking status:				
History of smoking	52 (82.5%)	34 (85.0%)	18 (78.3%)	
No history of smoking	11 (17.5%)	6 (15.0%)	5 (21.7%)	
Age at advanced diagnosis (years), Median [IQR]	62.0 [59.0;68.0]	62.0 [60.0;68.0]	61.0 [55.0;67.5]	
Follow-up time from advanced diagnosis (months), Median [IQR]	20.0 [13.1;27.2]	21.5 [15.1;30.2]	16.4 [11.3;25.6]	
Follow-up time from initiation of PD-1 (months), Median [IQR]	3.52 [1.91;6.13]	2.53 [1.41;3.74]	6.84 [5.18;8.48]	
Follow-up time from initiation of Cyramza (months), Median [IQR]	6.97 [2.66;9.88]	8.58 [6.85;10.8]	1.84 [1.08;3.71]	
% deceased	15 (23.8%)	12 (30.0%)	3 (13.0%)	

Note: One patient, who received a PD-1 inhibitor followed by Cyramza followed by a different PD-1 inhibitor, was considered in both cohorts.

Baseline patient characteristics Ramucirumab / PD-1 cohort

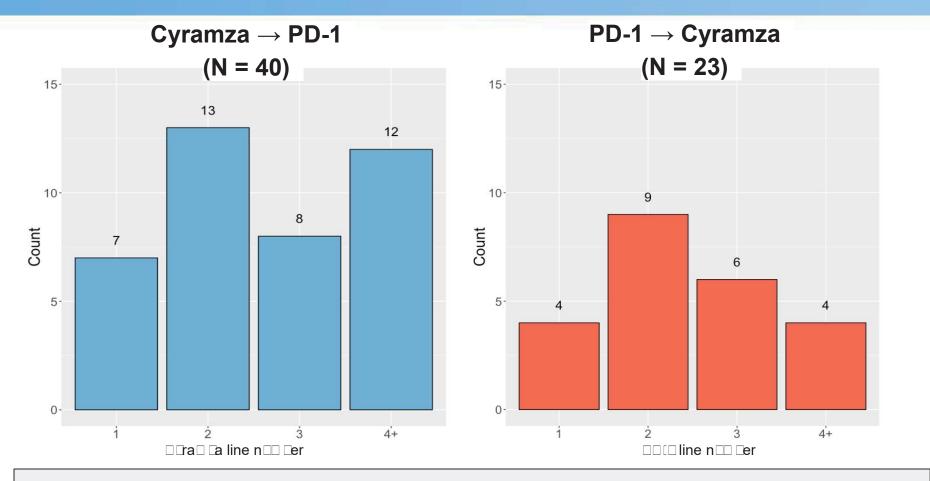
	All	Cyramza $ ightarrow$ PD-1	PD-1 \rightarrow Cyramza
	N=63	N=40	N=23
% PD-L1 Tested:	9 (14.3%)	7 (17.5%)	2 (8.70%)
PD-L1 Status:			
PD-⊡1 positive	3 (33.3%)	2 (28.6%)	1 (50.0%)
PD-□1 negative.not detected	4 (44.4%)	3 (42.9%)	1 (50.0%)
□nknown ⊡esults pending	2 (22.2%)	2 (28.6%)	0 (0.00%)
% EGFR Tested:	50 (79.4%)	34 (85.0%)	16 (69.6%)
EGFR Status:			
Mutation positive	5 (10.0%)	3 (8.82%)	2 (12.5%)
Mutation negative (wild-type)	45 (90.0%)	31 (91.2%)	14 (87.5%)
% ALK Tested:	46 (73.0%)	31 (77.5%)	15 (65.2%)
ALK Status:			
□□□ positive	1 (2.17%)	1 (3.23%)	0 (0.00%)
□□□ negative not detected	44 (95.7%)	30 (96.8%)	14 (93.3%)
□nknown results pending	1 (2.17%)	0 (0.00%)	1 (6.67%)

Note: One patient, who received a PD-1 inhibitor followed by Cyramza followed by a different PD-1 inhibitor, was considered in both cohorts.

Baseline patient characteristics Overall NSCLC cohort and ramucirumab / PD-1 cohort

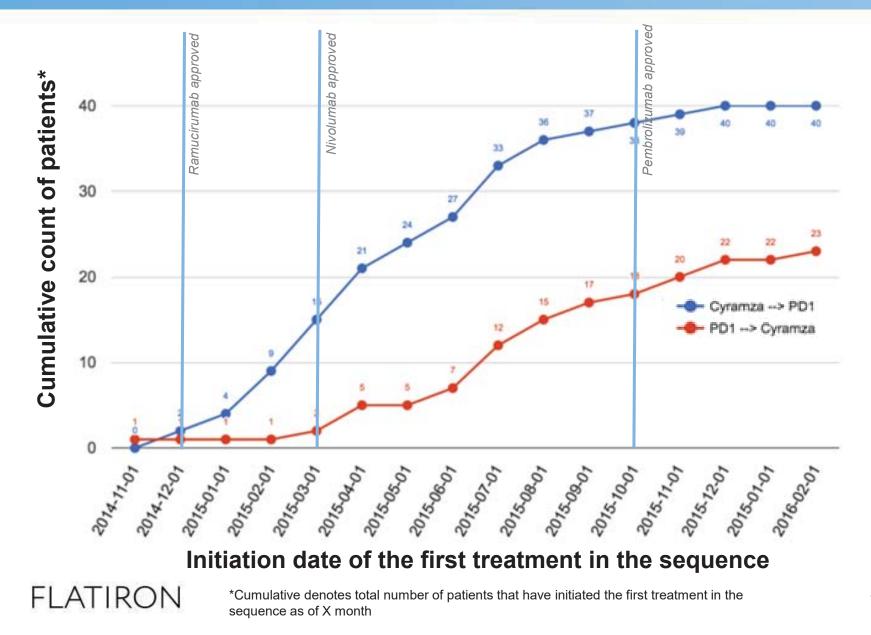
	Overall*	PD1/Cyramza Cohort
	N=23,139	N=63
Gender:		
Female	11019 (47.6%)	26 (41.3%)
Male	12120 (52.4%)	37 (58.7%)
Group stage at diagnosis:		
Stage 0-II	3009 (13.0%)	6 (9.52%)
Stage III	4578 (19.8%)	13 (20.6%)
Stage IV	14421 (62.3%)	43 (68.3%)
Group stage is not reported	1131 (4.89%)	1 (1.59%)
Histology:		
Non-squamous cell carcinoma	15831 (68.4%)	48 (76.2%)
Squamous cell carcinoma	5823 (25.2%)	15 (23.8%)
Smoking status:		
History of smoking	19626 (84.8%)	52 (82.5%)
No history of smoking	2800 (12.1%)	11 (17.5%)
□nknownīnot documented	713 (3.08%)	0 (0.00%)
Age at advanced diagnosis (years), Median [IQR]	69.0 [61.0;76.0]	62.0 [59.0;68.0]
Follow-up time from advanced diagnosis (months), Median [IQR]	6.71 [2.50;15.0]	20.0 [13.1;27.2]
% deceased	12617 (54.5%)	15 (23.8%)

*Overall includes patients in Flatiron's network diagnosed advanced NSCLC, and includes patients in the PD1/Cyramza cohort Note: One patient, who received a PD-1 inhibitor followed by Cyramza followed by a different PD-1 inhibitor, was considered in both cohorts.


Baseline patient characteristics Overall NSCLC cohort and ramucirumab / PD-1 cohort

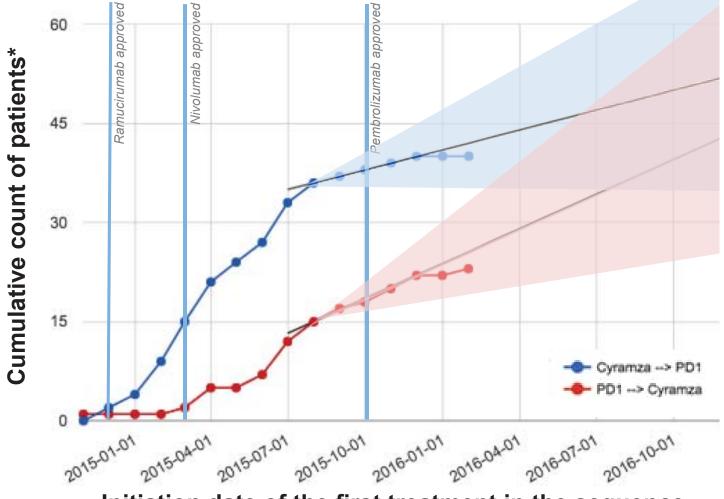
	Overall*	PD1/Cyramza Cohort
	N=23,139	N=63
% PD-L1 Tested:		9
PD-L1 Status:		
□□ □□□ p □siti □e		
□□ □□□ ne □ati □e In □t □etecte □		
□ns⊡ccess⊞lūn⊡eter□ inate test		
□n⊡n⊡nīres⊡ts pen⊑in□		
% EGFR Tested:		
EGFR Status:		
□ ⊑tati⊡n p⊑siti⊡e		
□ ⊑tati⊡n ne⊑ati⊑e ⊞il⊡t⊡pe⊡	9 - 9	
□ns□ccessⅢlīn□eter□ inate test		
□n⊡n⊡es⊡ts pen⊡n□		
% ALK Tested:		
ALK Status:		
□□□ p⊑siti⊑e		
□□□ ne□ati□eīn□t □etecte□	9	
□ns□ccessⅢlín□eter□ inate test		
□n⊡n⊡nīes⊡ts penīin□		

*Overall includes patients in Flatiron's network diagnosed with advanced NSCLC, and includes patients in the PD1/Cyramza c h t tell ne patient h receive a low inhight will be ward a will be a different be inhight relation of the charts be


□reat □ ent se □ □ encin □ □ □ c □ h □ rt

Key takeaways:

- □ □reat□ ent patterns □ar□ □i □el□ in real □□ □rl□ clinical practice
- □ he □ a □rit □ □patients □□□□ □recei □e □ the sec □n □ therap □ □interest
 i □ □ e □iatel □ □ll □□in □ □irst □ne line later □□ hile the re □ ain □er □□□□ □recei □e
 the sec □n □ therap □ □interest t □ lines a ter the □irst □


Uptake of different sequences over time

□e□□uestions for □iscussion

- □ hat kind of information □ould be helpful for prescribers to address both efficac□and safet□of different sequencin□□
 - \circ \Box hat endpoints should be considered $\Box \Box \Box$
 - □o□ should to icit□ be assessed □
- □ hat is a sufficient sample si □e for each arm □
 - □re the numbers needed different for a safet□question versus an efficac□question□
 - □ hat other options are available to ans □er these questions in the absence of adequate patient counts □
 - A pragmatic trial may "force" the randomization if we are unable to get enough Cyramza → PD¹ patients
- □re data of sufficient qualit□to be considered credible for stakeholders□
- □ hat t□pes of action □ould be taken based upon this information □
 - □ublication □ □e □ulator □ Clinical □ uideline □ □a □e □ □e □ □rial □

□ pected uptake of sequences over time

Initiation date of the first treatment in the sequence

FLATIRON

*Cumulative denotes total number of patients that have initiated the first treatment in the sequence as of X month

□e□□uestions □□eprise□and □e□t □teps

Key Questions for Discussion

- Is the dominant question efficac or to icit
- □ hat is a sufficient sample si □e for each arm □
- □re data of sufficient qualit □ to be considered credible for stakeholders □
- □ hat t□pes of action □ould be taken based upon this information □

Next Steps

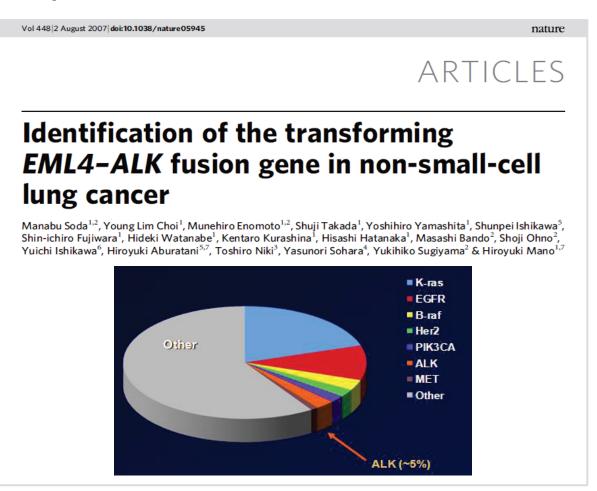
- Incorporate feedback from today's discussion into the study design
- □etermine timeline for full stud □ depe d o ample ize re uired □
- □evelop statistical anal sis plan

A Blueprint for Breakthrough: Exploring Utility of Real World Evidence

Maria Koehler MD PhD Vice President Strategy, Innovation and Collaboration Pfizer Oncology NY, NY

Confidential and Proprietary – Not for Further Distribution

Panel 1: Identify Case Studies and Explore Characteristics of Data Quality to Improve Collection


Crizotinib for ALK-positive NSCLC: Yesterday's Development and Today's Proposal

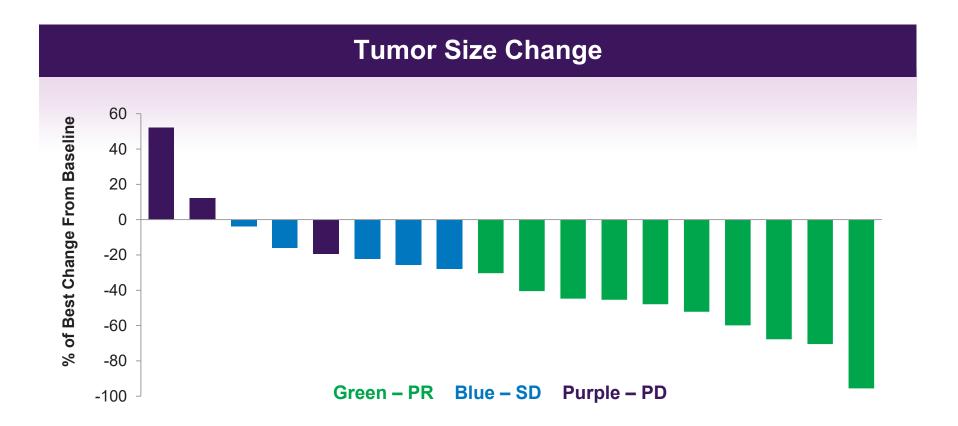
- □rief overview of crizotinib early development that led to accelerated approval pre □rea through Designation era □
- 2 FD discussions agreements and post approval commitments
- 3 Post approval real world data
 - Iternative development challenge

Discovery of EML4-ALK Fusion Gene in 2007

Soda, et al 🖓 Nature 🗆 🗆 🖾 ugust 🗅, 🗆 🗆 🗆

□□K □ anaplastic lymphoma □inase□□□FR □ epidermal growth factor receptor□□er□□ human epidermal growth factor receptor □□ PIK□C□□ phosphoinositide□□□inase, catalytic, alpha polypeptide

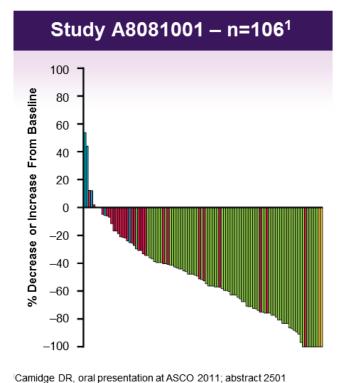
Crizotinib: Selective Inhibitor of ALK, MET and ROS1

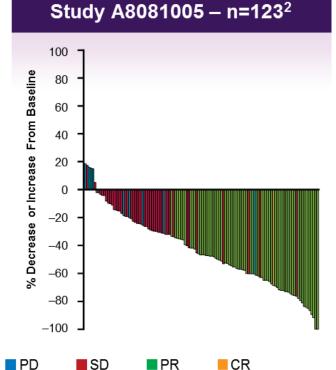

Cellular Selectivity on 10 of 13 Relevant Hits Upstate 102 **Kinase Panel** Selectivity IC50 (nM) Kinase 13 'Hits' Mean* Ratio <100X Met \square _ **Selective** $\square \square K$ for Met ROS \square RON \square ⊓ie⊓ □bl IRK S⊡y VDDFRD PD□FRβ

High Probability of ALK, MET and ROS1 Inhibition at Clinically Relevant Doses

ang Y, et al Clin Oncol continuits abstr <u>http://meetinglibrary/ascolorg.content/conte</u>

Study A8081001: Tumor Responses to Crizotinib for NSCLC Evaluable Patients with ALK Fusions




One patient had clinical progression and discontinued without radiographic confirmation

Kaketal ASCO 2009

ALK-Positive Non-Small Cell Lung Cancer Tumor Responses to Crizotinib by Patient

 RR for chemotherapeutic agents approved for the treatment of metastatic NSCLC is ~30–35% in firstline chemotherapy

Complete Response	1	2
Partial Response	67	69
Duration of Response ^{Median}	41.9 weeks (6.1, 42.1)	48.1 weeks (4.1, 76.6)

Riely GJ, oral presentation at WCLC 2011; abstract 1618

DRAFT - Subject to Further Review - Company Confidential and Proprietary - Internal Use Only

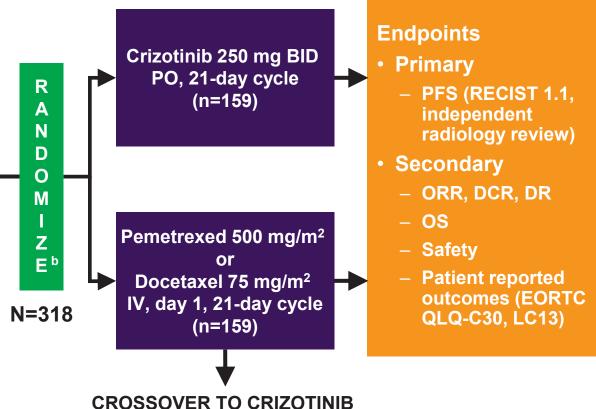
Crizotinib US NDA Approval

Crizotinib FDA approval

- Accelerated approval (AA) based on data from two studies
 - A8081001: Phase I with Detension phase NSCLC
 - A8081005: Single Arm Phase II
- NDA approved August 26th, 2011 in 4.9 mo
 - Treatment of patients with locally advanced or metastatic non-small cell lung cancer (NSCLC) that is anaplastic lymphoma kinase (AL□)-positive as detected by an FDA-approved test
- Abbott's Dx PMA simultaneously approved
 - The Dysis ALD Dreak Apart FISD Probe Dit is a Dualitative test to detect rearrangements involving the ALD gene via FISD in FFPD NSCLC tissue specimens to aid in identifying those patients eligible for treatment with DALDORI (criDotinib)

Post-Marketing Requirements & Commitments

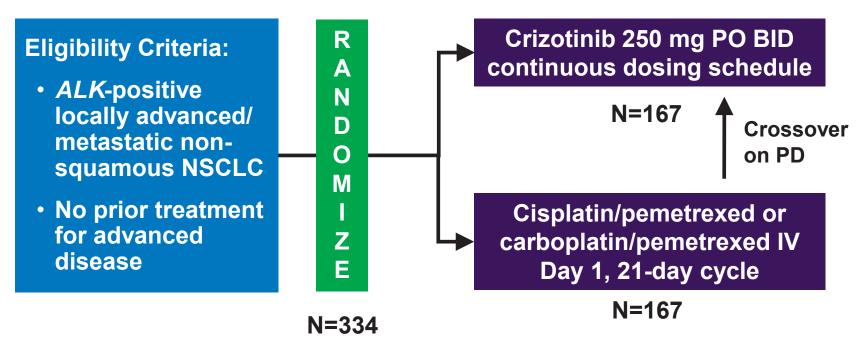
- ith rapid development and approval, come Post-Marketing Re uirements (PMRs)
 Commitments (PMCs)
- 314.510 Subpart
 Post-Marketing Re uirements
 - Study A8081007 2nd Line Phase 3 randomi ed vs chemo
 - Study A8081014 1st Line Phase 3 randomi ed vs chemo
- Other safety


 non-safety related PMRs
 PMCs
 - Assess visual effects
 - Dose adjustment strategy for hepatic and renal (severe) impairment
 - Dose adjustment strategy for C
 P3A inhibitors
 inducers
 - Dosing strategy with gastric p□ elevating agents
 - Response in AL□-negative NSCLC (20 additional patients in 1001)
 - Including assessment of other biomarkers
 - Final □Tc prolongation potential evaluation
 - □□posure-Response analyses of Phase 3 trials

PROFILE 1007: Phase 3 Second-line Study of Crizotinib vs. Pemetrexed or Docetaxel in *ALK*-Positive NSCLC

Key Entry Criteria

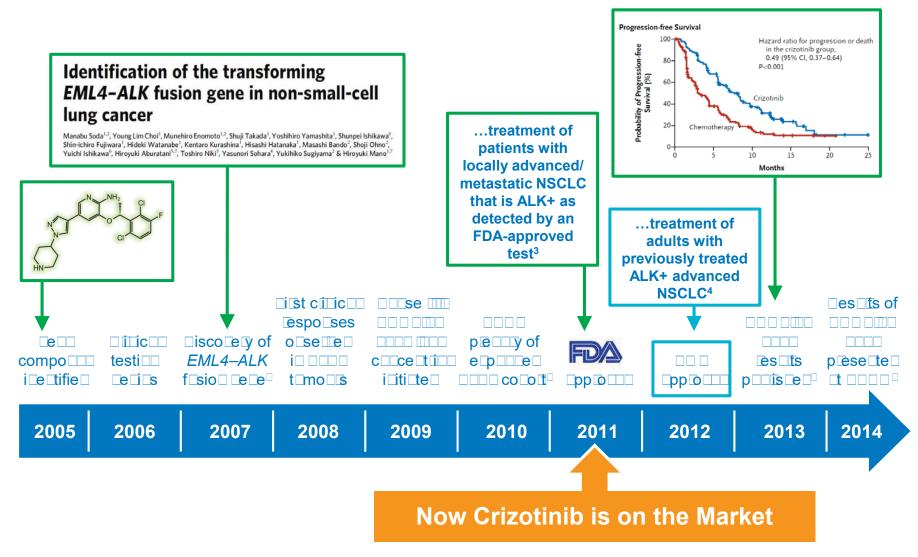
- ALK-positive by central FISH testing^a
- Stage IIIB/IV NSCLC
- Prior 1 prior chemotherapy (platinum-based)
- ECOG PS 0-2
- Measurable disease
- Treated brain metastases allowed



ON PROFILE 1005

^aALK status determined using standard ALK break-apart FISH assay ^bStratification factors: ECOG PS (0/1 vs 2), brain metastases (present/absent), and prior EGFR TKI (yes/no) Shaw et al., ESMO 2012

PROFILE 1014: Phase 3 First-line Study of Crizotinib vs. Platinum/Pemetrexed in *ALK*-Positive NSCLC


- Primary endpoint: PFS

□ ased on RECIST v 1.1 and confirmed by independent radiology review ClinicalTrials.gov I □: □CT011 □1 □0

RAFT – Subject to Further Review – Company Confidential and Proprietary – Internal Dse Only

Crizotinib: Rapid Timeline From Compound Identification to Approval and Challenges with Post-approval Development

Crizotinib Efficacy Across Phase 1, 2 and 3 Studies in ALK-Positive NSCLC was very similar

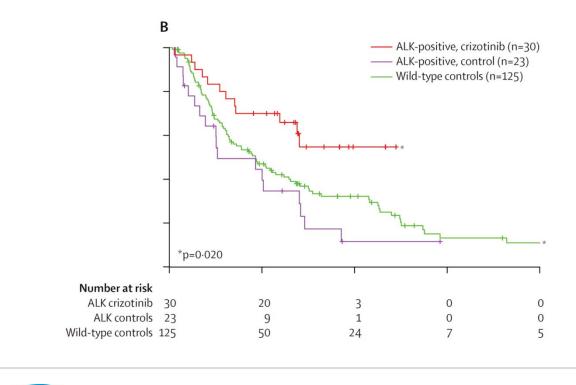
Approval and Post-approval Commitments

	PROFILE 1001 ¹ (N=143)	PROFILE 1005 ² (N=259)	PROFILE 1007 ³ (N=172)	PROFILE 1014 ⁴ (N=172)
Phase	1	2	3	3
Line of therapy	Any line	2 nd line and beyond	2 nd line	1 st line
ORR	61%	60%	65%	74%
DOR, median (mo)	11.3	10.5	7.4	11.3
PFS, median (mo)	9.7	8.1	7.7	10.9

¹Camidge et al., Lancet Onc 13(10): 1011-9, 2012 ²Kim et al., ASCO 2012 ³Shaw et al., NEJM 368(25): 2385-94 , 2013 ⁴Solomon et al., NEJM 371(23): 2167-77, 2014

ASCO 2016 abs 9066 OS HR 0.85 – cross over

What did subsequent studies in real world teach us?



Confirmation of Crizotinib's Effect Thru Retrospective Analysis

Effect of crizotinib on overall survival in patients with advanced non-small-cell lung cancer harbouring ALK gene rearrangement: a retrospective analysis

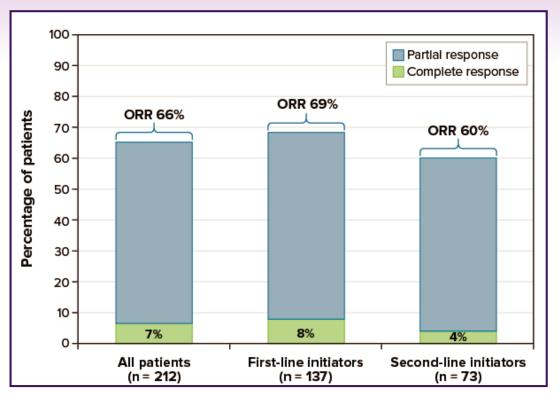
Alice T Shaw, Beow Y Yeap, Benjamin J Solomon, Gregory J Riely, Justin Gainor, Jeffrey A Engelman, Geoffrey I Shapiro, Daniel B Costa, Sai-Hong I Ou, Mohit Butaney, Ravi Salgia, Robert G Maki, Marileila Varella-Garcia, Robert C Doebele, Yung-Jue Bang, Kimary Kulig, Paulina Selaru, Yiyun Tang, Keith D Wilner, Eunice L Kwak, Jeffrey W Clark, A John Iafrate, D Ross Carnidge

Lancet Oncol 2011; 12: 1004–12

This analysis, performed while the Ph 3 confirmatory trials were ongoing, confirms crizotinib's effect vs historical chemotherapy treated control pts

US/Canada Crizotinib Retrospective Chart Review

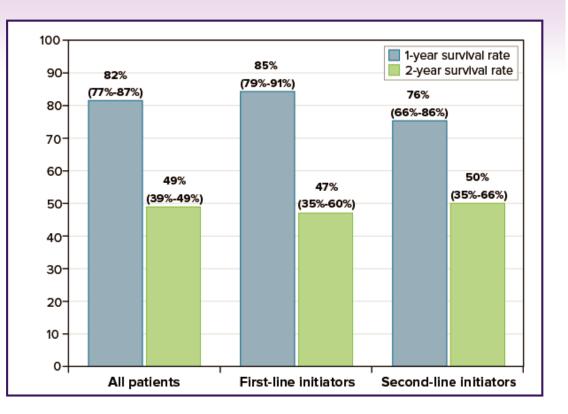
Methods


- Retrospective cohort st dy in 212 patient (de-identified)
- Physicians (N□107 in □S, N□40 in Canada) treating patients with NSCLC were recr□ited
- For patients meeting the st dy incl sion criteria, data were retrospectively abstracted by the participating physicians sing a sec re, web-based data collection form

US/Canada Crizotinib Chart Review

Results: Response Rate During Crizotinib Treatment

 The estimated cri totinib ORR was 66% for the overall cohort (69% for firstline initiators vs. 60% for second tater-line initiators)



US/Canada Crizotinib Chart Review

Results: Kaplan-Meier Survival Estimates by Line of Crizotinib Treatment

- □ased on Kaplan-Meier estimation, 1- and 2-year survival rates from crizotinib initiation were 82% (95% CI, 77%-87%) and 49% (95% CI, 39%-60%), respectively
- Median PFS from crizotinib initiation was 9.5 months (95% confidence interval IC III) 8.7-10.1 months), in the overall cohort
- Median OS from crizotinib initiation was 23.4 months (95% C□ 19.5 months to not reached), or □2 years (95% C□ 1.6 years to not reached), for the overall cohort

Note: 95% confidence interval shown in parentheses

Retrospective Chart Review Indicates Concordance Between the Real World Clinical Effectiveness and Clinical Trial Efficacy Results

	PROFILE 1001 ¹ (N=143)	PROFILE 1005 ² (N=259)	PROFILE 1007 ³ (N=172)	PROFILE 1014 ⁴ (N=172)
Phase	1	2	3	3
Line of therapy	Any line	2 nd line and beyond	2 nd line	1 st line
ORR	61%	60%	65%	74%
DOR, median (mo)	11.3	10.5	7.4	11.3
PFS, median (mo)	9.7	8.1	7.7	10.9

¹Camidge et al., Lancet Onc 13(10): 1011-9, 2012 ²Kim et al., ASCO 2012 ³Shaw et al., NEJM 368(25): 2385-94 , 2013 ⁴Solomon et al., NEJM 371(23): 2167-77, 2014

Crizotinib Retrospective Analysis Sept 2015

16TH WORLD CONFERENCE ON LUNG CANCER SEPTEMBER 6-9, 2015 DENVER, COLORADO, USA

Abstract 1355 Crizotinib outcome and post-progression management in ALK+ NSCLC: IFCT-1302 CLINALK

Michaël Duruisseaux,¹ Benjamin Besse,² Jacques Cadranel,³ Maurice Pérol,⁴ Elisabeth Quoix,⁵ Julien Mazières,⁶ Renaud Descourt,⁷ Eric Dansin,⁸ Clarisse Audigier-Valette,⁹ Lionel Moreau,¹⁰ José Hureaux,¹¹ Remi Veillon,¹² Josiane Otto,¹³ Anne Madroszyk,¹⁴ Alexis B. Cortot,¹⁵ Francois Guichard,¹⁶ Pascaline Boudou-Rouquette,¹⁷ Alexandra Langlais,¹⁸ Pascale Missy,¹⁸ Franck Morin,¹⁸ Gérard Zalcman,¹⁹ Denis Moro-Sibilot ²⁰

On behalf of the French Cooperative Thoracic Intergroup

up 🚺FCT

¹CHU de Grenoble, Grenoble, France; ²Institut Gustave Roussy, Villejuif, France; ³Hôpital Tenon/AP-HP, Paris, France; ⁴Centre Léon Bérard, Lyon, France; ⁵CHU de Strasbourg, Strasbourg, France; ⁶CHU de Toulouse, Toulouse, France; ⁷CHU Morvan, Brest, France; ⁶Centre Oscar Lambret, Lille, France; ⁹CHITS de Toulon Sainte-Musse, Toulon, France; ¹⁰CH de Colmar, Colmar, France; ¹¹CHU d'Angers, Angers, France; ¹²CHU de Bordeaux, Bordeaux, France; ¹³CRLCC de Nice, Nice, France; ¹⁴CRLCC de Marseille, Marseille, France; ¹⁵CHU de Lille, Lille, France; ¹⁶Polyclinique de Bordeaux, Bordeaux, France; ¹⁷Hôpital Cochin/AP-HP, Paris, France; ¹⁹French Cooperative Thoracic Intergroup (IFCT), Paris, France; ¹⁹Hôpital Bichat/AP-HP, Paris, France; ²⁰CHU de Grenoble, Grenoble, France

--CHU de Grenoble, Grenoble, Fra

Study Design

- · Non-interventional, retrospective, multicenter study
- Primary endpoint: Overall Survival measured from the start of crizotinib
- Secondary endpoints: PFS, ORR at 3 months (RECIST 1.1), efficacy of subsequent systemic therapies
- Statistical analysis: stratified Cox regression model for risk of death, logistic regression model for probability of objective response in evaluable patients
- Inclusion period: from November 18 2011 to December 31 2013

Inclusion criteria:

- Advanced stage III or stage IV NSCLC
- ALK FISH +
- > 18 years
- · Crizotinib treatment in the setting of:
- Expanded access program (EAP)
- Approved drug
- No enrollment in crizotinib clinical trial
 At least 1 week of crizotinib

Databases screened:

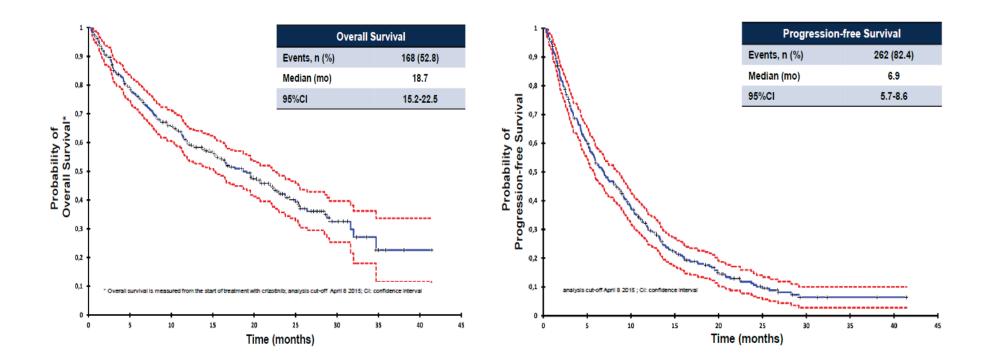
- Crizotinib French expanded access program
- From IFCT network (117 centers)

Patients enrolled: n=318

- 210/311 patients from the crizotinib expanded access program:
 - 34 patients unmet inclusion criteria
 - 67 patients excluded (missing data)
- 118 patients treated with crizotinib as approved drug

PFS: progression free survival; ORR: overall response rate; FISH: Fluorescent In Situ Hybridization;

Baseline Characteristics at Time of Crizotinib Treatment Start


Baseline characteristics, n (%)		n=318
Age (years)	Median (range)	5 <mark>8.4</mark> (19.2-88. <mark>4</mark>)
Gender	Female / Male	157 (49.4) / 161 (50.6)
Ethnicity	Non-asian/ Asian / MD	282 (98.6) / 4 (1.4) / 32
Smoking status	Never / Former or Current / MD	172 (55.1) / 140 (44.9) / 6
Current smoker at time of crizotinib initiation	Yes / No / MD	30 (9.6) / 282 (90.4) / 6
Histology	Adenocarcinoma / Large cell / Other / MD	289 (91.8) / 19 (6.0) / 7 (2.2) / 3
ECOG Performance Status (PS)	0-1 / 2-4 / MD	222 (78.5) / 61 (21.5) / 35
Stage	IV / III / MD	265 (85.0) / 47 (15.0) / 6
Brain metastases	Yes / No / MD	101 (34.9) / 188 (65.1) / 29
Line of therapy before crizotinib	0/1/2/>2	17 (5.3) / 171 (53.8) / 58 (18.2) / 72 (22.7)
Drugs received before crizotinib	Platinum based / Pemetrexed based / MD	254 (89.1) / 217 (76.1) /16

Primary and Secondary Endpoints

Primary Endpoint: Overall Survival

Secondary Endpoint: Progression-free Survival

Crizotinib: Rapid Approval, Excellent Initial Activity and Challenges with Post-approval Development Requires Alternative Solutions to Phase 3 randomized trials?

- ALK-positive advanced NSCLC is a serio s and life-threatening disease with a high met medical need
 - Orphan Dr□g Designation □ Fast □rac □ Designation

Would that be BTD today?

- No elisting therapy indicated specifically for ALK-positive NSCLC
- □ALKOR□provided a meaningf□ therape□tic benefit
 - − □ enerally safe and well tolerated
 - Associated with high, d rable ORR
 - □hese data were reasonably li□ely to predict clinical benefit of cri□otinib in patients
 with ALK-positive advanced NSCLC
- Phase 3 randomi ded trials were already derway
 - 2nd-line Phase 3 St⊡dy A8081007 initiated Jan⊡ary 2010
 - 1st-line Phase 3 St⊡dy A8081014 initiated Jan⊡ary 2011

Clinical Development of Crizotinib in ALK-Positive Advanced NSCLC

Protocol	Setting	Trial Design	Primary Endpoints
A8081001 Phase 1	All Lines Solid Tumors ALK-Positive NSCLC	Single-Arm, Open-Label	Safety, PK, ORR
A8081005 Phase 2	≥2 nd -Line	Single-Arm, Open-Label	ORR, Safety
A8081007 Phase 3	2 nd -Line	Crizotinib vs. Pemetrexed or Docetaxel, Open-Label	PFS 🗸
A8081014 Phase 3	1 st -Line	Crizotinib vs. Pem/Carbo or Pem/Cis, Open-Label	PFS 🗸

Could we have used RWE studies as confirmatory studies in lieu of traditional randomized Phase 3 studies in as the initial evidence is strong?

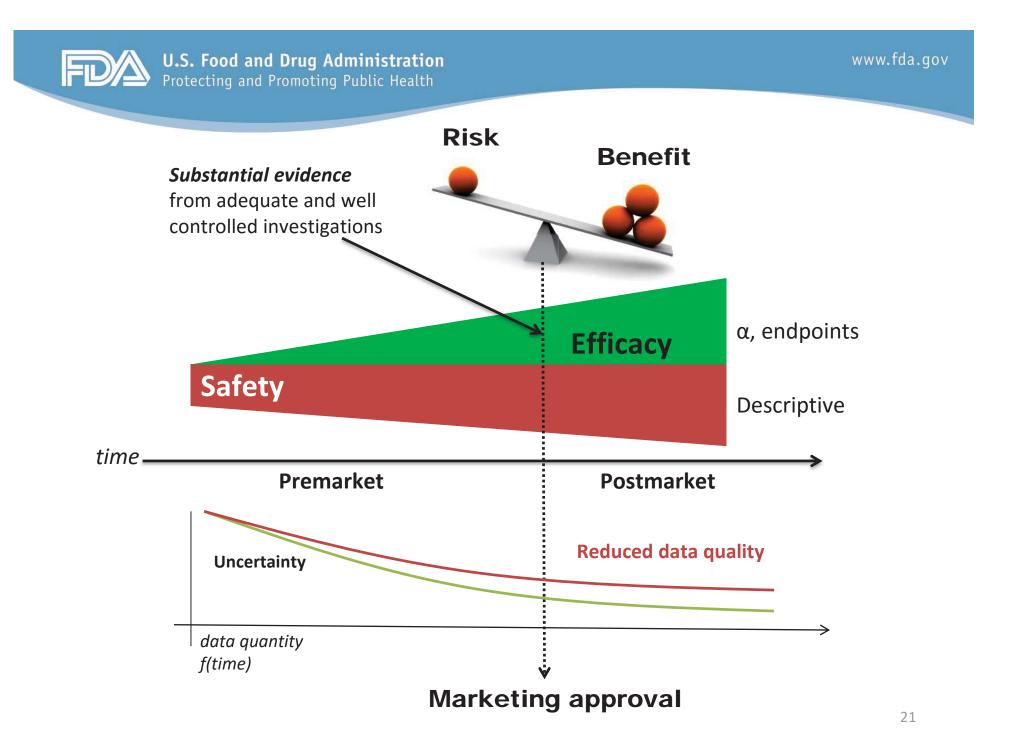
What type of real world evidence would FDA accept in distinct situations: Pragmatic Randomized Trials? Contemporaneous "historical" controls? Registries?

□asis for approval – data from 255 ALK-positive NSCLC patients I Completed

www.fda.gov

Sean Khozin, MD, MPH

Senior Medical Officer Office of Hematology and Oncology Products Food and Drug Administration


The information in this presentation are my own and do not necessarily reflect the views and policies of FDA

www.fda.gov

Disclosures

• None

Uncertainty management

- Using novel pipelines of high quality data in regulatory decision making can reduce uncertainty
 - RWE
 - Patient reported
 - Biometrics (wearables, implantable, etc)

Realtine

Neor real time

Perodic

Databases

Social Video Biometrics Omics

barch

Tables

trials

Clinical

68

Structured

ructured

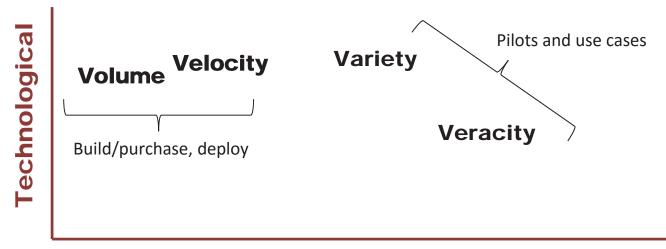
Mostify unstructured

Underined

Volume

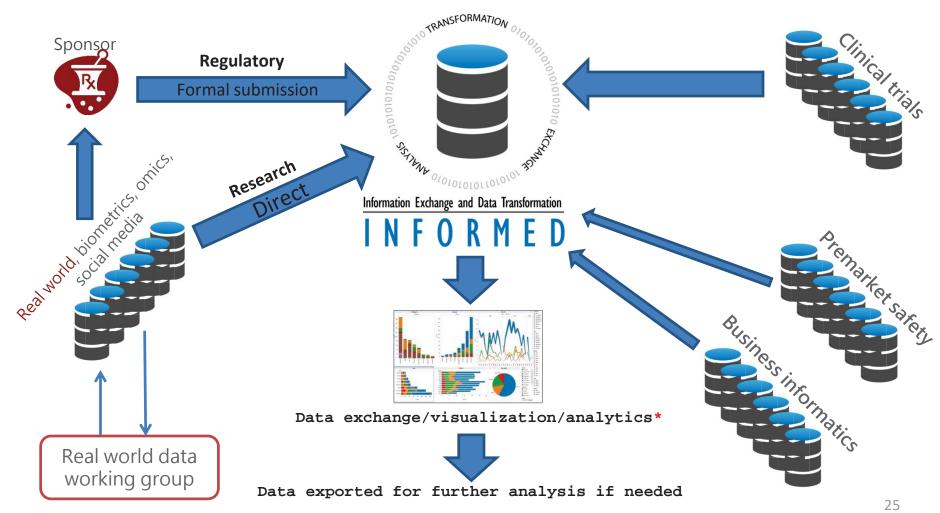
Real world evidence in the expanding universe of big data

210022


Current regulatory framework (generalization)

www.fda.gov

The grand unified theory = learning health system


Pad tP buildinP caPacitP

Organizational, sociopolitical

Information Exchange and Data Transformation (INFORMED)

*Technology and software development

www.fda.gov

"This is what using an EMR feels like"

