

Conference on Clinical Cancer Research

Panel Four:

Development Paths for New Drugs with Large Treatment Effects Seen Early

Conference on Clinical Cancer Research

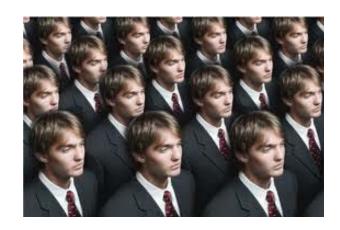
Development Paths for New Drugs with Large Treatment Effects Seen Early

Mikkael Sekeres
Cleveland Clinic

Development Paths for New Drugs with Large Treatment Effects Seen Early

Jane Perlmutter
Patient Advocate

janep@gemini-grp.com


Importance/Public Relevance

Many *patients* can not afford *patience*; neither should researchers or regulators

What Does the Public Want?

- We all want the same thing
 - Highly effective, long-acting therapies
 - Few side effects
 - Manageable costs

What Does the Public Want?

- We each have different priorities
 - Trade offs between length and quality of life
 - Trade offs among severity and length of toxicities
 - Concerns about late-occurring toxicities

Balancing Needs of Current & Future Patients

 May be willing to try unproven treatments and/or very toxic treatments

- Need well-tested treatments with minimal side effects
- Need current patients to be willing to participate in clinical trials

Large Treatment Effects

Clear Cases

- Potentially curative, or at least long-term chronic disease
- Very likely to be effective in approved target population (e.g., >80%), even if it is a small group
- Limited additional toxicities

Questionable Cases

- Adds weeks or months to life
- Significantly better rate of effectiveness (e.g., doubling)
- Moderate additional toxicities

Alternative Paths to FDA Approval

	Accelerated Approval	Potential New Mechanisms
When Appropriate	 Significant early effects for diseases with limited other options 	 Unusually large effects in early trials
Pros	 Make potentially useful new agents rapidly available to patients with limited options Provide early opportunity for developers to receive reimbursements Provide additional assessment of safety (including late occurring toxicities) and efficacy 	 Make potentially useful new agents rapidly available to patients with limited options Provide early opportunity for developers to receive reimbursements Eliminate the need to randomize additional patients
Cons	 Require additional randomization of patients 	 Provide little opportunity to identify late-occurring toxicities

Challenge Think Outside the Box

Challenge

- Ethical and practical issues accruing patients to randomized trials once new agents become available
- Increasingly small populations
- Difficulty dealing with multiple outcomes

Potential Solution

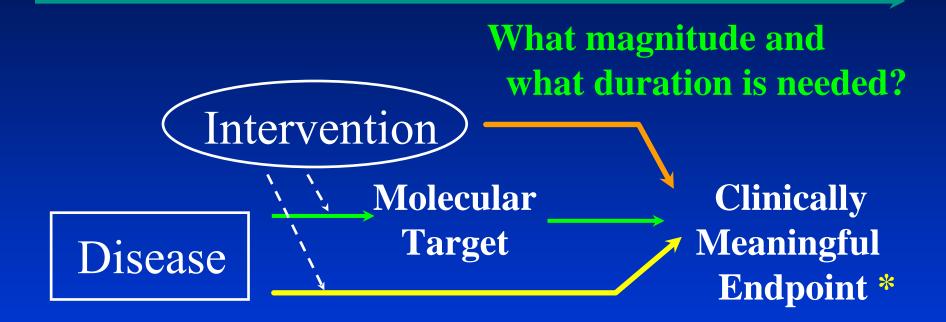
 Unbalanced and/or adaptive randomization designs; registration trials

- Decision Analysis
- Bayesian Approaches

2011 Conference on Clinical Cancer Research

Potential Approaches for Large Treatment Effects Seen Early in Development

November 10, 2011


Thomas R. Fleming, Ph.D.

Professor of Biostatistics
University of Washington

tfleming@u.washington.com

Fleming TR, Richardson BA. JID 190(4): 666-674, 2004

Mechanisms of Action of the Intervention & Causal Pathways of the Disease Process

* IOM (2010) & Temple (FDA):
Direct measures of
"feels, functions or survives"

Development Strategies

After Phase 1

...if early results are very favorable...

What should be the next step?

- ~ Phase 2b: (Randomized Screening Trial)
 - ...if true effect is moderate
- ~ Phase 3: (Randomized Registration Trial)
 - ...if true effect is very large

Development Strategies

- ~ Phase 2b: (Randomized Screening Trial)
 - ...if true effect size is moderate...
- ~ Phase 3: (Randomized Registration Trial)
 - ...if true effect size is very large...

Some properties:

- Randomization ⇒ Assessments not limited to: tumor response, for single agent regimens

 - ...E.g., Can assess OS, PFS, PROs, (i.e. regis. endpoints) for either single agent or add-on regimens
- Confidentiality of interim results reduces pre-judgment

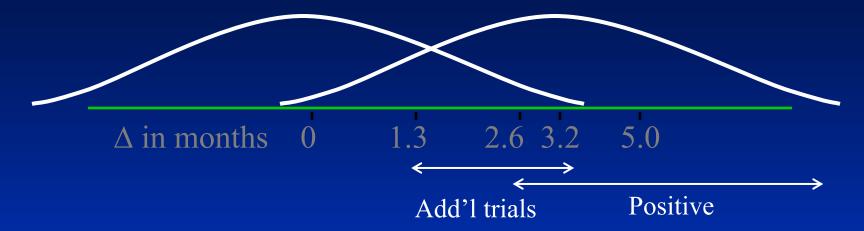
Statistical Principles

- Goals for Phase 2b screening trial
 - ~ Large enough to support proof of concept
 - ~ Small enough to be a measured step before Phase 3
- Assumes identical Phase 2b and Phase 3 endpoints
- For illustration, assume

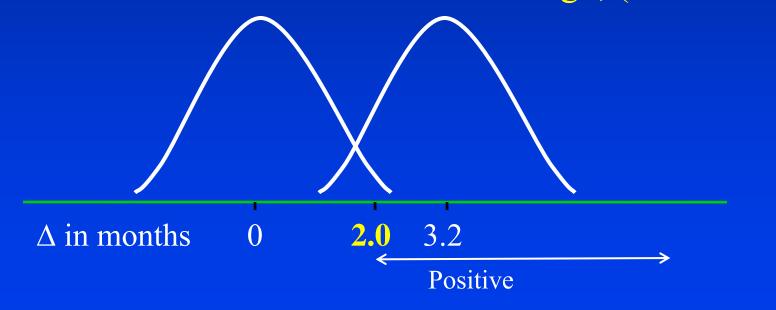
control arm median is 6 months

Likely realistic for

Survival in 2nd or 3rd line NSCLC PFS in 1st & 2nd line Breast Cancer Survival in 1st line Pancreas Cancer

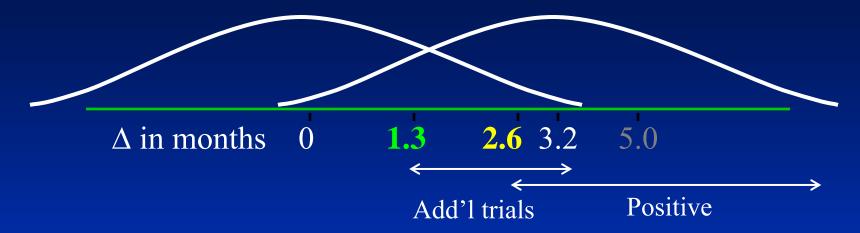

~ Will require adjustment for different settings; principles remain

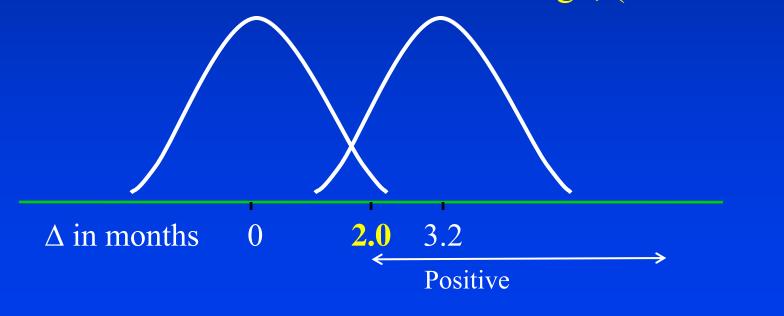
Phase 3 Design Considerations


• Illustration:

- > Suppose a 6 vs. 8 month improvement is the smallest benefit of clinical significance...
- In turn, the trial should have 90% power to detect a true RR=0.65 (a 6 vs. 9.2 month difference)

Outcome Probabilities — Phase 2b Trial Design, (120 events)


Outcome Probabilities — Phase 3 Trial Design, (451 events)

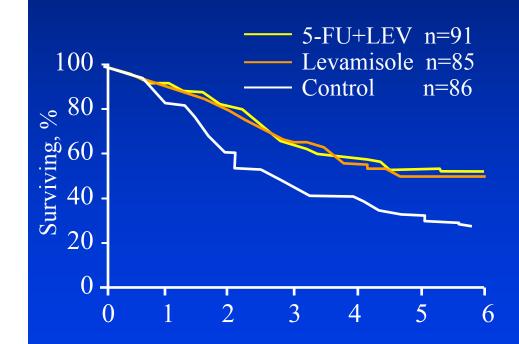

Phase 2b Trial Considerations

- Objective:
 - Maintain low (i.e. 10%) false negative error rate while allowing a 10% to 15% false positive rate
- Target sample size:
 - The size of a stand alone registrational Phase 3 trial (i.e., ¼ of an SOE2 trial)
- 120 events (approx. 451 * .25)

Outcome Probabilities — Phase 2b Trial Design, (120 events)

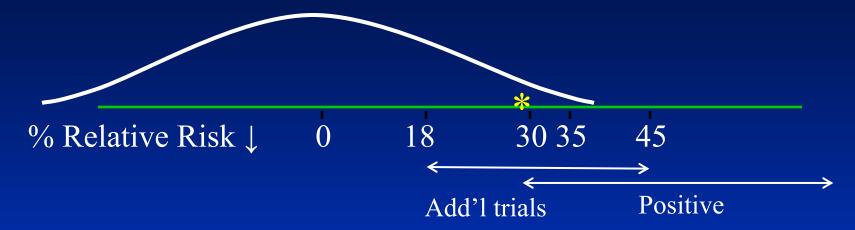
Outcome Probabilities — Phase 3 Trial Design, (451 events)

Phase 2b Sample Size & Duration

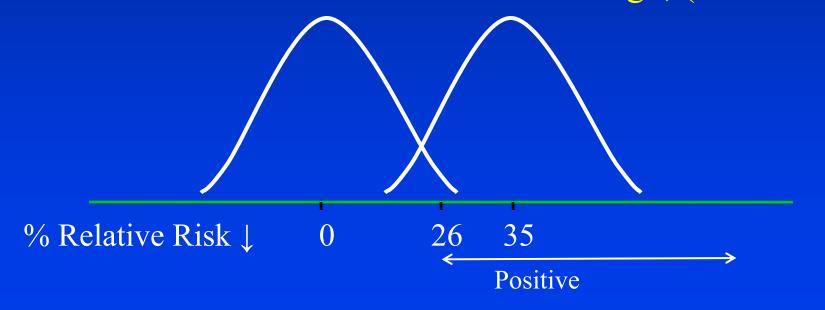

- Total sample size for the trial: 2N = 220
 - ~ 120 events;

Prob. stat sign: 66% if true RR = 0.65 (i.e. Δ = 3.2 mo)

- ~ Rule out ineffective indications
 - with 86% probability
- ~ Rule in effective indications with 90% probability
- 8 month duration of enrollment ... Assume enrollment 28 patients per month
- 4 additional months of follow-up
- Data available for analysis approximately one year after initiation of enrollment


SURGICAL ADJUVANT THERAPY OF COLORECTAL CANCER

NCCTG Trial



Years from randomization

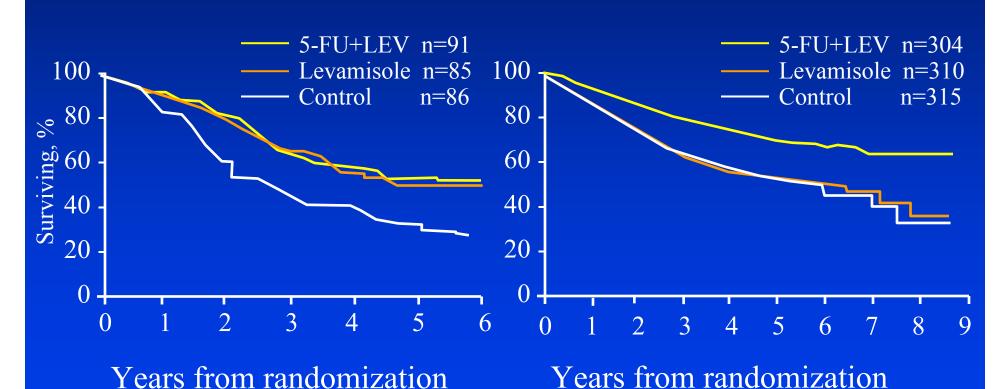
Outcome Probabilities — Phase 2b Trial Design, (120 events)

Outcome Probabilities — Phase 3 Trial Design, (451 events)

SURGICAL ADJUVANT THERAPY OF COLORECTAL CANCER

NCCTG Trial

Cancer Intergroup Trial



Years from randomization

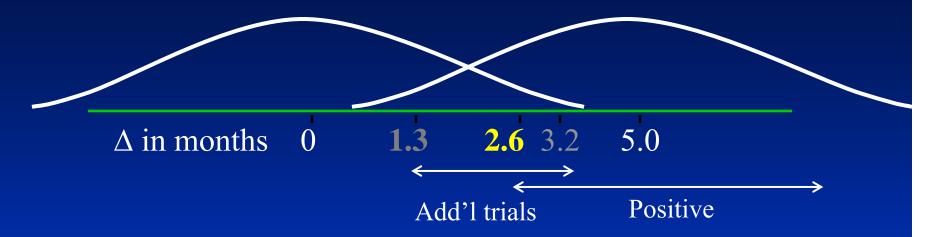
SURGICAL ADJUVANT THERAPY OF COLORECTAL CANCER

Cancer Intergroup Trial

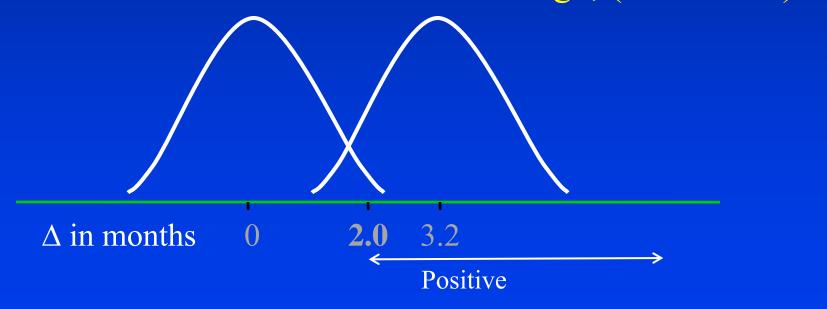
Statistical Summary

- Phase 2b designed with subsequent Phase 3 in mind
- Goals:
 - ~ to screen out ineffective indications, &
 - to screen in the effective indications with high probabilities
- If "signal" seen, requires confirmation in Phase 3
 - Probability of Phase 3 success therefore enriched
- Strongly favorable evidence from Phase 2b could allow consideration of registration...

Development Strategies


After Phase 1

...if early results are very favorable...

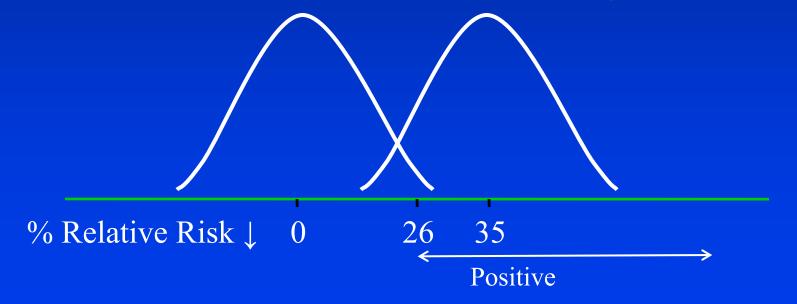

What should be the next step?

- ~ Phase 2b: (Randomized Screening Trial) ...if true effect is *moderate*
- ~ Phase 3: (Randomized Registration Trial)
 ...if true effect is very large

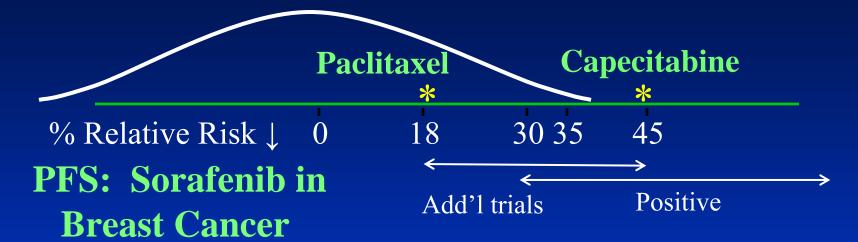
Outcome Probabilities — Phase 2b Trial Design, (120 events)

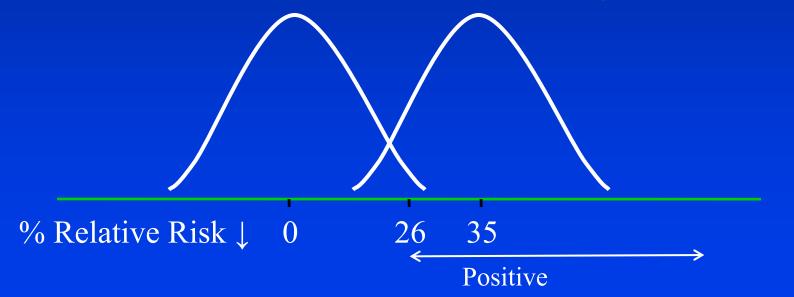
Outcome Probabilities — Phase 3 Trial Design, (451 events)

Illustration of a Phase 2b Trial with "Compelling" Results: HIVNET 012


• Results Lancet 1999; 354: 795-802

		MCI of HIV	
AZT	$\frac{N}{302}$	6-8 wks 59 (21.3%)	14-16 wks 65 (25.1%)
NVP	307	35 (11.9%)	37 (13.1%)
		1p = 0.0014	1p = 0.0003


Outcome Probabilities — Phase 2b Trial Design, (102 events)


Outcome Probabilities — Phase 3 Trial Design, (451 events)

Outcome Probabilities — Phase 2b Trial Design, (120 events)

Outcome Probabilities — Phase 3 Trial Design, (451 events)

Development Strategies

- ~ Phase 2b (Randomized Screening Trial) ...if true effect size is *moderate*...
- ~ Phase 3 (Randomized Registration Trial) ...if true effect size is *very large*...

Some properties:

- Randomization ⇒ Assessments not limited to:
 tumor response, for single agent regimens
 ...E.g., Can assess OS, PFS, PROs, (i.e. regis. endpoints)
 for either single agent or add-on regimens
- Confidentiality of interim results reduces pre-judgment

Conference on Clinical Cancer Research

Development Paths for New Drugs with Large Treatment Effects Seen Early

Janet Woodcock FDA

2011 Conference on Clinical Cancer Research

Case studies/Industry Perspective
Gracie Lieberman
November 10, 2011

Vemurafenib in V600E BRAF Melanoma

Early signal of activity (n=16)

Phase I response rates: 69%

Historical response rates: 10-20%

September 2009

Randomized phase 3: Vemurafenib vs. standard of care

OS primary endpoint per HA; targeted HR: 0.75 80% power and two-sided 2.5% level of significance 680 patients (468 events planned)

August 2010; Phase 2 response rates: 52% (n=132)

October 2010; Phase 3 amendment per HA

Overall alpha level increased to 2-sided 5% from 2-sided 2.5%

Alpha spending rule set with higher probability to cross at IA

Less conservative target HR: 0.65

PFS added as a co-primary endpoint

Criteria for cross-over established

August 2011

Full approval based on positive final PFS and interim OS analysis

PFS HR: 0.26; 95% CI: (0.20, 0.33); OS HR: 0.44; 95% CI: (0.33, 0,59)

Crizotinib in ALK Positive Advanced NSCLC

Early signal of activity (n=14)

Phase I response rates: 50%

Historical response rates: 10-20%

Phase I protocol amendment

April 2009

End-of-phase II meeting:

Observed data: 57% ORR in N=82 ALK-positive NSCLC patients
Options for Accelerated Approval Discussed; Randomized phase III recommended by HA
AA could be granted on interim analysis of a surrogate endpoint

April 2010

HA interaction:

Can 2 single arm studies support AA with 1 confirmatory trial

HA response: review issue

July 2010: General pre-NDA meeting

August 2011

Accelerated approval based on 2 single arm trials; ORR: 50% - 60%; median duration of response 40 – 50 weeks

Confirmatory studies with PFS as primary endpoint are ongoing Cross-over is allowed

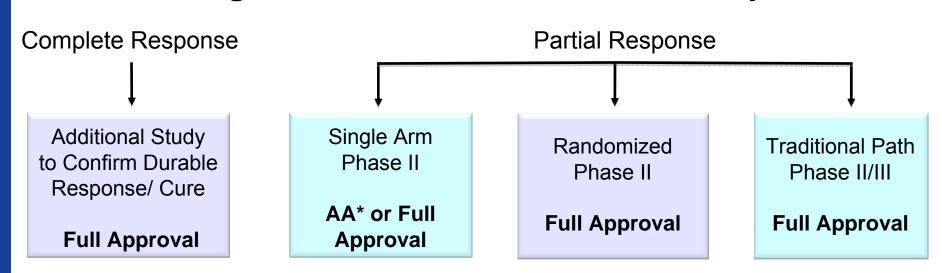
Vemurafenib and Crizotinib – The Fleming Proposal

Early signal of activity (n < 20)

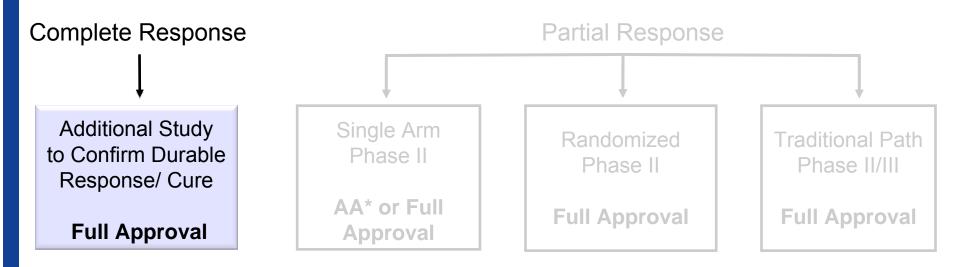
Phase I response rates: 50% - 60% Historical response rates: 10-20%

Need to confirm activity before phase II or HA interactions

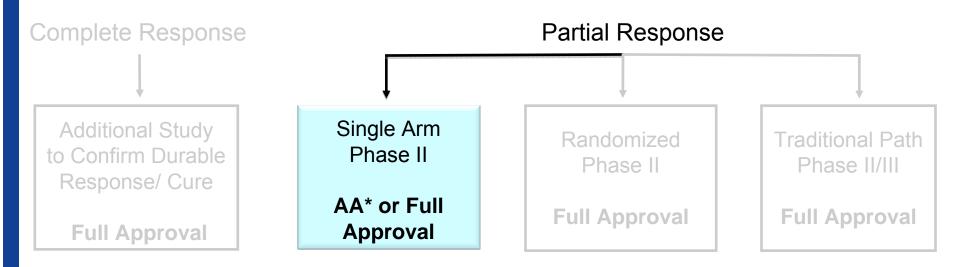
Randomized phase II: NME vs. SOC

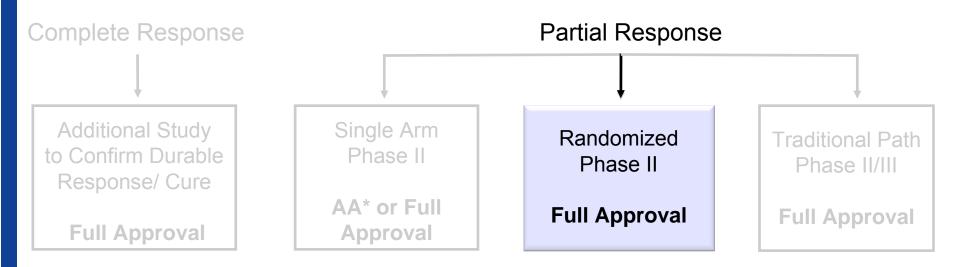

OS primary endpoint: Screening target HR=0.65

Ex. 150 patients (98 events); study duration: 18 months or 200 patients (112 events); study duration: 16 months

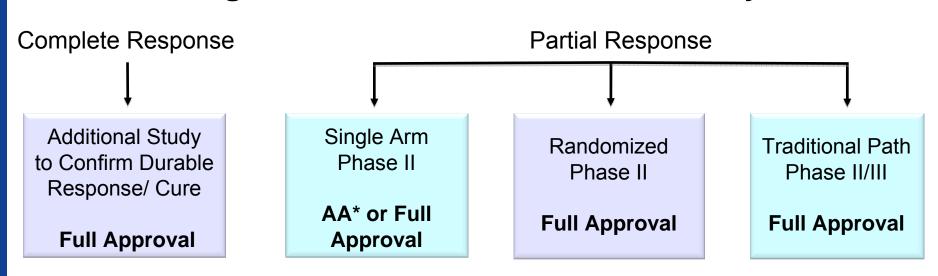

No cross-over; full approval is the goal

Pre-specified targeted HR < 0.5 observed **Full approval**


Pre-specified targeted HR
not observed but still
clinically meaningful
ORR confirmed and >> control
Accelerated approval


^{*} May or may not require randomized confirmatory study

- Rate of complete response
- Confirmation of response
- Duration of response



- Rate of overall response
- Confirmation of response
- Duration of response
- Historical outcomes
- Feasibility to conduct confirmatory study if AA
- Clarity when randomized confirmatory studies will be required
- Acceptance of single arm studies and ORR endpoints in global environment

- Rate of overall response
- Confirmation of response
- Duration of response
- Historical outcomes
- Translatability of ORR into clinical benefit
- Clarity of what "success" means
- Operational complexity of conducting the study
- Acceptance of small randomized studies in global environment
- Primary endpoint PFS with cross-over or OS with no cross-over

Large treatment effects observed early

Question: Could early treatment effects observed in vemurafenib and crizotinib qualify these drugs for accelerated approval based on single arm phase II followed by single arm confirmatory trial?

Question: How many exposed would be required to determine and agree on path forward?

^{*} May or may not require randomized confirmatory study

Points to Consider for Guidance

Providing "breakthrough" drugs to patients sooner will require clear guidance

Guidance needs to provide a new path to enable expedited conversations/agreements

Guidance needs to provide clarity on

- Definition of poor outcomes
 - Relative to the observed/expected benefit of the new therapy
- Processes for diagnostics
 - Data required for approval of diagnostics
 - Drug approval without commercially available diagnostics
- Process when commercial product not final
 - Post-marketing bridging studies for new formulation
- Agreements on risk sharing
 - Feasibility/conduct of PMC

Back Up

Iniparib in Triple Negative BC

Early signal of activity (n=14)?

Limited single agent activity in phase la

Randomized, open label phase II (n = 123)

Iniparib + SOC vs. SOC

Cross-over allowed

ORR: 52% vs. 32%; PFS: 5.9 vs. 3.6 months; OS: 12.3 vs. 7.7 months

Randomized, open label phase III (n = 519)

Iniparib + SOC vs. SOC

Cross-over allowed

PFS: 5.1 vs. 4.1 months; OS: 11.8 vs. 11.1 months

What went wrong:

Imbalance in prognostic baseline characteristics; Scientific plausibility Study conduct: was phase II biased?

Conference on Clinical Cancer Research

Development Paths for New Drugs with Large Treatment Effects Seen Early

> Wyndham Wilson NCI

Development Paths for New Drugs

Early Considerations of Full Approval

- Not a solution to the problem
 - Limits efficacy and safety data
 - Discourages company sponsored follow up trials
 - No advantage to patients

Considerations for Accelerated Approval

- Modified criteria to increase drug approval
 - Modify requirement that drugs show activity after failure of approved agents.
 - Limits ability to conduct trials
 - Assumes a drug is only beneficial if active in a new space
 - Limits approval of new drugs, which may show important uses in post-marketing trials
 - Criteria should focus on approval of active agents with balanced risk-benefit, particularly if a new drug class

Considerations for Accelerated Approval

- Modified criteria to increase drug approval
 - Provide pathway for approval of combination agents
 - One or both may not have FDA approval overall or for indication
 - Scientific evidence that agents target multiple points in a driver pathway-in vitro synergy
 - Single agent and combination safety
 - High durable response rates for combination

Considerations for Accelerated Approval

- Strict adherence to confirmation of efficacy and safety in post-approval trials
 - Required milestones with real penalties
 - Active surveillance of trial progress
 - Required withdrawal of indication if clinical benefit/safety is not confirmed or trials are not timely
 - Ability to challenge withdrawal based on "legal" criteria should be addressed within FDA policy. Non-clinically based challenges places the accelerated approval process and patient safety at high risk

Conference on Clinical Cancer Research

Development Paths for New Drugs with Large Treatment Effects Seen Early

> Edward Korn NCI

Panel 4: Development Paths for New Drugs with Large Effects Seen Early

Dr. R. Sridhara

Director, Division of Biometrics V

CDER, FDA

Large Effect Seen Early

- Large Effect Definition?
 - Knowledge of disease course
 - Disease dependent
 - Available therapy
 - Availability of historical data
 - You know when you see it?
- Seen Early
 - Chance?, Over estimate?, Safety?

Proposed Designs

- Single arm studies
 - Monotherapy
 - Rare diseases
 - Magnitude and duration of response
 - Limited safety data, Benefit >>> Risk
 - Historical data unavailable in biomarker based subgroup
 - Biomarker a prognostic marker better risk population in the study
 - Small sample size lack of confidence in the estimates
 - Vemurafenib example: Ph 1 extended phase 26/32 (81%) responders, 95% CI: 64%, 93%). Ph 2 study 69/132 (52%) responders, 95% CI: 43%, 61%).
 - Valid biomarker Approved test?

Proposed Designs

- Phase II RCT
 - Monotherapy or combination
 - Limited safety data, Benefit >>> Risk
 - Huge differences can be observed with small sample size – lack of confidence in the estimates?
 Replication?
 - Iniparib example
 - Valid biomarker Approved test?

Summary

- Exploratory Studies: less restrictive, generate hypothesis
- Confirmatory Studies: Hypothesis testing controlling false positive conclusions
- Single arm studies with substantial response and duration of response in rare diseases
- Proposed Ph 2
 - A confirmatory study for large treatment effect,
 - Futility study if early effect was by chance, and
 - For moderate effect could consider planned adaptation to increase sample size.
 - Simulation of different decision possibilities is critical before start of study

Summary

- RCT allows to evaluate products despite gaps in historical knowledge, controls confounding due to known and unknown factors, provides both comparative efficacy and safety for benfit:risk evaluation
- Large effect is a moving target
- Consult FDA if large effect is observed in early development for future design of studies