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Commentary

Achieving the Goals of Effective, Safe, and Individualized
Cancer Care

Samantha A. Roberts1, Erin K. Karnes2, Jeffrey D. Allen1, Joshua S. Benner2, Ellen V. Sigal1, and
Mark McClellan2

At the 2010Conference onClinical Cancer Research, held
on October 20, 2010, in Washington, DC, co-convened by
Friends of Cancer Research and the Engelberg Center for
Health Care Reform at the Brookings Institution, partici-
pants explored 4 pressing challenges in the field. Articles
summarizing the panel’s recommendations on each of
these topics are featured in this issue of Clinical Cancer
Research (1–4).

Recent years have been marked by numerous import-
ant discoveries in clinical cancer research, bringing new
therapeutic options to patients in great need. As these
discoveries have been translated from bench to bedside,
another important trend has emerged: Increasingly,
stakeholders across public and private sectors have iden-
tified common goals in clinical cancer research and joined
together to drive real progress toward safer, more effec-
tive, and more individualized cancer prevention, diagno-
sis, and treatment strategies.

This is a reflection of some important underlying trends
in discovery and development. First, collaborative efforts
are increasingly required to tackle the most pressing chal-
lenges facing clinical cancer research today, including big
questions such as how we ensure that drug development is
efficient; that resulting products are safe, effective, and as
personalized as possible; and that regulatory and reim-
bursement policies facilitate and reward innovation that is
valuable to patients. Second, information technology and
other types of technical progress havemade such collabora-
tions easier. However, many obstacles remain.

Overcoming these obstacles has increasingly been the
focus of our collaborative work on innovation in cancer
care. October 2010marked the third year that the Engelberg
Center for Health Care Reform at the Brookings Institution
and Friends of Cancer Research have convenedmembers of
the cancer clinical research community to discuss some of
the most significant opportunities and challenges related to
their shared goals. With support from the American Asso-
ciation for Cancer Research, the American Society of Clin-
ical Oncology, and Susan G. Komen for the Cure, this

conference facilitates substantive multisector collaboration
among leading representatives from government, acade-
mia, the patient community, and industry. By bringing all
of these varied perspectives to the table and organizing
expert panels to focus on discrete topics, these conferences
have built a track record of producing results. Concepts
presented at the 2009 Conference on Clinical Cancer
Research led to the publication of 4 articles and stimulated
progress on important topics, including ways to streamline
data collection for supplemental indications of cancer treat-
ments, use of progression-free survival as an endpoint in
phase III oncology trials, development of drug combina-
tions, and an accelerated pathway for approval of targeted
cancer treatments (5–8).

One of the most exciting and promising aspects of mod-
ern cancer drug development is the potential to personalize
treatments bydeveloping drugs that inhibit specificmolecu-
lar targets. Success stories of personalized cancer treatments
include anti–epidermal growth factor receptor (EGFR) ther-
apies, such as erlotinib, which target EGFR-overexpressing
tumors, and anti–human epidermal growth factor receptor
2 (HER2) therapies, such as trastuzumab, which target
HER2-overexpressing breast cancers. The key to developing
such targeted therapies lies in identifying responsive patient
populations and tumor characteristics. Due to the molec-
ular heterogeneity ofmost tumors, however, this has proven
extremely challenging. It is often not possible to identify
predictive biomarkers before the start of phase III trials of
anticancer therapeutics. As a result, many drugs fail to show
a statistically robust treatment effect in these trials even
though they might be very effective if used in the correct
patients. It is clear that new approaches are needed to
develop matched diagnostics and therapeutics. The first of
the 4 articles developed from presentations at the 2010
conference uses castrate-resistant prostate cancer as a case
study to present a potential adaptive phase III trial design in
which an appropriate patient population is identified early
in the trial, allowing the efficacy of a test therapeutic to be
evaluated within that population later in the same trial (1).
Such an approach maintains the rigorous statistical stan-
dards needed to evaluate drugs, is more consistent with our
current knowledge of tumor biology, and can speed prog-
ress in getting effective anticancer treatments to responsive
patients.

In addition to efficacy, drug safety is a major factor in
regulatory decisionmaking. Anticancer drug toxicity can be
severe, leading to drug discontinuation or even death, and is
often responsible for the failure of a drug candidate to
receive marketing approval. Despite the importance of
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safety information in drug development, current methods
of preclinical toxicity testing are outdated and rely heavily
on animal models that are often not predictive of adverse
events in humans. The incorporation of modern systems
biology technologies, such as genomics and proteomics,
into drug safety testing could greatly improve our evalua-
tionofnewdrug candidates. Such an approach could enable
an understanding of the biology of adverse events, identify
biomarkers predictive of specific adverse events, and poten-
tially identify the patients most at risk for an adverse event.
The second article presents 2 case studies that demonstrate
the potential of systems biology approaches in toxicity
testing (2). Integration of these modern techniques into
drug safety testing could greatly improve the efficiency and
accuracy of drug development.
As treatments for cancer become more effective and

patients are living longer, the issue of pain in cancer
becomes an increasingly important topic. Cancer-related
pain is a frequently reported symptom that can have a
significant and long-lasting impact on quality of life. This
pain can result from the cancer itself or from the cancer
treatment. Although pain is widely recognized as a sig-
nificant issue in cancer, integrating pain metrics into
clinical and regulatory decision making is challenging
due in part to the subjective nature of pain. Furthermore,
there is a high level of uncertainty regarding what kind of
pain-related data the U.S. Food and Drug Administration
(FDA) would find sufficient to contribute to labeling or
approval decisions, making many sponsors reluctant to
incorporate pain measurements into drug development
programs. As a result, few clinical trials include pain
palliation or pain prevention as either a primary or
secondary endpoint. The third article explores the feasi-
bility of developing objective standards for pain measure-
ment and identifies the need to develop new tools to
measure pain (3). Several methodologic challenges need
to be addressed in the form of an FDA guidance to
facilitate the measurement of pain in oncology clinical
trials. Including such measurements and incorporating
the resulting information into drug labels would greatly
benefit the cancer community, as patients could live not
only longer, but happier and more productive lives.
Approval and labeling of new cancer drugs by the FDA

relies upon safety and efficacy data from population-based

trials. However, data suggest that an average of only 1 in
4 patients receiving an approved cancer drug regimen
significantly benefit, whereas the remainder of patients
experience little to no benefit and may experience poten-
tially toxic side effects. Although this clearly points to a need
for a better understanding of factors associated with treat-
ment response, generating timely and actionable evidence
of this sort through prospective clinical trials can be diffi-
cult. The fourth and final article uses a case study in non–
small cell lung cancer to examine the feasibility of directly
engaging patients to participate in a proposed prospective
study of molecular determinants of treatment response (4).
With a focus on previouslymarketed drugs, the goal of such
a study would be to inform labeling changes and clinical
practice such that cancer patients receive treatments that are
more personalized and therefore more likely to result in
benefit rather than harm.

Each of these articles marks an early but significant step
toward resolving real barriers to more effective, safe, and
individualized cancer care. More importantly, as a col-
lection, they illustrate the potential for innovation and
collaboration within the cancer community and give
reason for optimism that these goals can be achieved.
To date, the ideas presented have been conceived of and
refined by groups of collaborating stakeholders, with the
benefit of input from other stakeholders as part of the
annual conference. In order for these ideas to continue to
come to fruition in a meaningful and practical way, more
steps to resolve barriers will be required. In turn, these
efforts will require collaboration reflecting active engage-
ment of stakeholders, ranging from patients and consu-
mers to scientists and regulatory officials. We hope to
keep working together to make that happen.
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Special Report

Adaptive Clinical Trial Designs for Simultaneous Testing of
Matched Diagnostics and Therapeutics

Howard I. Scher1, Shelley Fuld Nasso2, Eric H. Rubin3, and Richard Simon4

Abstract
A critical challenge in the development of new molecularly targeted anticancer drugs is the identi-

fication of predictive biomarkers and the concurrent development of diagnostics for these biomarkers.

Developing matched diagnostics and therapeutics will require new clinical trial designs and methods of

data analysis. The use of adaptive design in phase III trials may offer new opportunities for matched

diagnosis and treatment because the size of the trial can allow for subpopulation analysis. We present an

adaptive phase III trial design that can identify a suitable target population during the early course of the

trial, enabling the efficacy of an experimental therapeutic to be evaluated within the target population as

a later part of the same trial. The use of such an adaptive approach to clinical trial design has the

potential to greatly improve the field of oncology and facilitate the development of personalized

medicine. Clin Cancer Res; 17(21); 6634–40. �2011 AACR.

Introductory Note

At the 2010 Conference on Clinical Cancer Research, co-
convened by Friends of Cancer Research and the Engelberg
Center for Health Care Reform at the Brookings Institution,
participants explored 4 pressing challenges in the field.
Articles summarizing the panel’s recommendations on each
of these topics are featured in this issue of Clinical Cancer
Research (1–4).

Key Role of Companion Diagnostics in Oncology
Drug Development

Nearly all cancer drugs being developed today are
designed to inhibit molecular targets that have been iden-
tified as being dysregulated in human tumors. Genomics
has established that the dysregulated pathways andmutated
genes in tumors originating in a particular primary site are
highly variable. To optimally evaluate and utilize a targeted
approach requires the concurrent development of diagnos-
tics that enable the identification of those tumors that are
most likely to be sensitive to the anticancer effects of a
particular drug or drug combination. The reality of code-

veloping a matched diagnostic and therapeutic has pro-
found implications for the clinical trial designs used in
drug development. Trials of cytotoxic drugs typically enroll
unselected patients at a particular point in the continuumof
a disease in the hope that the response of tumors that are
sensitive to the treatment will be sufficient to show benefit
for the population as a whole. Although this approach may
lead to broad labeling indications, it also exposes patients
with nonsensitive tumors to unnecessary toxicities and
increases the possibility of discarding a drug that may
dramatically benefit a subset of patients. Consequently, this
strategy is not viable for molecularly targeted agents, in
which the activity is likely to be restricted and determined
more by the genomic alteration(s) within a tumor at the
time treatment is being considered than by the primary site
in which the tumor originated. The use of anatomically
based (i.e., primary site of disease), "all comers" approaches
to develop targeted approaches has typically led to failure
in phase III studies, or demonstration of "success" based
on statistically significant but clinically questionable
benefits (5).

Although developing the right drug for a specific patient
has great value to the individual and is critical for controlling
the costs of health care, it dramatically increases the com-
plexity of the drug development process. For many drugs,
the complexities of identifying a predictive biomarker and
the practical complexities of developing analytically valid
diagnostic tests for the biomarker are grossly underesti-
mated. Knowing when to start the development of the
diagnostic is also an issue, particularly when the effective-
ness of the drug in any population is uncertain. Developing
the right drug for the right subset of patients requires new
clinical trial designs and new paradigms of data analysis.

Efforts to codevelop a matched diagnostic and therapeu-
tic face other challenges as well. Even with extensive
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preclinical investigations, it is often difficult to identify a
predictive biomarker and evaluate it in the phase I trial of a
given drug. As a result, it becomes necessary to have a test
for, and develop preliminary data showing, the predictive
power of the candidate marker in the context of phase II
investigations, so that properly focused phase III trials can
bedesigned, conducted, and completed. In the unusual case
in which a single predictive biomarker has been identified
and a validated assay has been developed prior to the start
of the phase III trial, targeted enrichment designs and
stratification designs can be used (6, 7). For example, in
the targeted enrichment design used in the development
of trastuzumab, only "marker-positive" patients were in-
cluded. In the stratification design, patients were not
excluded on the basis of marker status, but the size of the
trial was adequately powered for the anticipated frequency
of marker-positive patients and the overall 5% type I error
allocated between the comparisonof treatments overall and
the comparison within marker-positive patients. Adaptive
phase II designs, such as the design recently used in
the Biomarker-Integrated Approaches of Targeted Therapy
for LungCancer Elimination (BATTLE) clinical trial in non–
small cell lung cancer (8) and the Investigation of Serial
Studies to Predict Your Therapeutic Response with Imaging
and Molecular Analysis 2 (I-SPY2) trial in breast cancer
(9), are useful for identifying the most promising predic-
tive biomarker in phase II development, but they require
large sample sizes. The outcome-adaptive randomization
weights used in the BATTLE study design complicate the
interpretation of results, and the determination of whether
they improve efficiency has not been established (10). The
BATTLE studydid, however, show the feasibility of a biopsy-
based, hypothesis-driven biomarker trial, and the follow-up
phase II trial, BATTLE 2, will test the predictive value of the
gene signatures prospectively. In 2010, the U.S. Food and
Drug Administration (FDA) issued a draft Guidance to
Industry on Adaptive Design Clinical Trials for Drugs and
Biologics (11).
Due to the complexity of cancer biology, it is often not

possible to firmly establish the biomarker(s) most likely to
predict sensitivity to a particular drug or class of drug by the
time pivotal phase III trials are set to begin. Recently,
however, several adaptive clinical trial designs have been
published that show how to design the trial(s) so that the
most suitable target population of patients is adaptively
identified during the trial and the effectiveness of the drug is
evaluated in that population in a rigorously defined and
statistically valid manner (12–14). For example, when the
biomarker assay has been validated and standardized, and
performance characteristics are known, the adaptive signa-
ture design (12) and cross-validated adaptive signature
design (14) are carefully crafted adaptive phase III non-
Bayesian approaches that preserve the desired type I error
rate while identifying an optimal target population. Neither
design results in a change in randomization weights or in
eligibility criteria (both of which could require statistical
adjustments to avoid introduction of bias), which makes
them better suited for licensing registration trials than the

Bayesian methods used in the phase II BATTLE trial. Inter-
estingly, although the FDA Guidance on adaptive trial
designs acknowledges that a Bayesian framework can be
useful for planning purposes to evaluate model assump-
tions and decision criteria, they recommend that the study
design be planned in a framework to control the overall
study type I error rate (11).

These are, however, complex designs that have not been
tested in practice. Challenges to the use of these designs are
that the treatment comparisons can only be conducted after
completion of the study, that the developed predictive
signature may be based on a combination of factors with
unclear biological meaning, and that it may be difficult to
interpret the results if there are imbalances in other baseline
prognostic factors between treatment arms in the marker-
positive subgroup. Although these designs are in someways
conservative, they are nevertheless dramatically different
from the kinds of designs used for the vast majority of
clinical trials being conducted today.

Here, we describe how adaptive methods can be used
for indication determination in a manner that provides
the level of confidence in conclusions that we expect from
phase III registration trials and in a manner consistent with
the FDA Guidance on adaptive design. The current draft of
the Guidance defines a clinical study using an adaptive
design as one that "includes a prospectively planned oppor-
tunity for modification of one or more specified aspects of
the study design and hypotheses based on analysis of data
(usually interim data) from subjects in the study. Analyses
of the accumulating study data are carried out at prospec-
tively planned time points within the study, can be per-
formed in a fully blinded manner or in an unblinded
manner, and can occur with or without formal statistical
hypothesis testing" (11). In some cases, adaptive designs
require fewer patients but much more upfront planning.

To illustrate the careful planning necessary for proper use
of adaptivemethods in this context, a detailed illustrationof
the use of the adaptive signature design of Freidlin and
Simon (12) is provided. The approach includes 3 compo-
nents: (i) a statistically valid identification, basedon the first
stage of the trial, of the subset of patientswhoaremost likely
to benefit from thenew agent; (ii) a properly powered test of
overall treatment effect at the end of the trial with all
randomized patients; and (iii) a test of treatment effect for
the subset identified in the first stage but only with patients
randomized in the remainder of the trial. The design is
adaptive in the sense of the FDA Guidance because the
primary plan for the final analysis is influenced by the
results of the trial. The adaptive signature design (12) and
the more recently published cross-validated adaptive sig-
nature design (14) were developed for use in gene expres-
sion profiling settings when there are enormous numbers of
candidatemeasurements that can be combined to provide a
classifier of which patients are likely (or unlikely) to benefit
from a new treatment relative to a control regimen. These
designs can be used much more broadly, however, regard-
less of the candidate predictors, and are discussed in greater
generality by Simon (15).

Adaptive Patient Characterization
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Background

Application of the original adaptive signature paradigm
to a real clinical development setting has many complex-
ities, which will be illustrated here for castration-resistant
prostate cancer (CRPC), the advanced, lethal form of the
disease. Molecular profiling studies show that reactivation
of androgen receptor (AR) function is a consistent feature
of CRPC (16), in part, through AR overexpression and
overexpression of androgen-synthetic enzymes leading
to increased intratumoral androgens (17, 18). The clinical
significance of these findings has been validated in trials
of abiraterone acetate, an inhibitor of androgen synthesis
in the testis, adrenal gland, and tumor (19, 20), and
MDV3100, a novel AR antagonist selected for activity in
prostate cancer model systems with overexpressed AR (21).
Abiraterone was recently shown to confer a survival benefit
after chemotherapy in patients with CRPC and is now
approved by the FDA for this indication (22). MDV3100
has shown activity comparable with that of abiraterone in
postchemotherapy CRPC (23), and a phase III registration
trial for this population has been fully accrued. Noteworthy
in the trials of both agents was the similarity of response in
matched patient populations, which ranged from dramatic
prostate-specific antigen declineswith durable radiographic
control in some to intrinsic resistance in others, suggesting
the presence of predictive biomarkers in tumors. A number
of other agents targeting different points in the AR signaling
pathway are currently in development (24), and although
predictive biomarkers of sensitivity have been postulated,
none has warranted the development of a validated assay
or begun the formal process of clinical qualification (11).
As biotechnology continues to provide the tools to charac-
terize tumors at the genomic scale and basepair resolution,
it is likely that relevant predictivemarkers will be identified.

Further adding to the complexity of developing drugs for
CRPC is the recent demonstration that 3 additional agents,
with different mechanisms of action—Provenge (sipuleu-
cel-T; Dendreon), Jevtana (cabazitaxel; Sanofi), andAlphar-
adin (radium-223; Bayer)—also confer a survival benefit
(25–28). With the expanded armamentarium, it will
become increasingly more difficult to show the survival
benefit of an agent without enriching for patients most
likely to respond. Identification and development of vali-
dated assays for predictive biomarkers of sensitivity are
likely to play a significant role in the ultimate approval of
these and future therapies.

The Adaptive Signature Approach

The adaptive signature approach provides for a final
analysis consisting of 2 parts: first, outcomes for all patients
randomized to receive the new drug will be compared with
outcomes for all patients randomized to receive the control.
If this comparison is significant at a more stringent than
usual 2-sided significance level of a0, then the new drug is
considered broadly effective. Otherwise, a single subset
analysis is conducted. The patients in the trial are randomly

partitioned into a training set and a validation set. The
training set is used to develop a "classifier" that identifies the
subset of patients who seem to benefit from the new
treatment compared with the control. This classifier can be
based on a combination of all the clinical and biomarker
candidate variables measured before treatment. When this
single classifier is completely specified using only the train-
ing set, it is applied to classify patients in the validation set
with respect to whether they are predicted to benefit from
the new treatment. Outcomes for patients in this subset of
the validation set who were randomized to receive the new
treatment are compared with outcomes for patients in this
subsetwhowere randomized to receive the control regimen.
Only the patients in the validation set are used for this
comparison. Because the training set was used to develop
the classifier, it cannot be used to evaluate it. If this differ-
ence is significant at the reduced 2-sided significance level of
0.05-a0, then the new treatment is considered effective for
the subset of patients defined by the classifier developed in
the training set. The cross-validated adaptive signature
design is a more statistically powerful version of this
approach (14). However, even application of the original
adaptive signature paradigm to a real clinical development
setting has many complexities, an example of which will be
illustrated here for CRPC.

A Phase III Adaptive Trial Design

The design we describe for the clinical trial is an
application of the adaptive signature approach of Freidlin
and Simon (12) and could be used with many more
candidate predictive markers. This design is appropriate
for settings in which (unlike the case of HER2 overexpres-
sion and trastuzumab development) there is not yet a
single predictive biomarker candidate, in which there is
high confidence by the time of initiation of the phase III
clinical trial of the drug.

Eligible patients are individuals with progressive CRPC
for whom a targeted therapeutic approach is being devel-
oped, and for whom tumor material is available. The
requirement of sufficient tumor for analysis at entry ensures
near-complete ascertainment of the biomarker or bio-
marker panel. Formalin-fixed, paraffin-embedded (FFPE)
samples that were obtained either as part of the routine
testing to establish diagnosis or during radical prostatecto-
my are typically the most readily available; therefore, for
practical reasons, assays that can be conducted on FFPE
specimens are preferred. For biomarkers present at a higher
frequency in progressive metastatic CRPC (relative to pri-
mary tumors that are noncastrate), a repeat biopsy of the
metastatic lesion will be required, whereas for those assays
that canbe conducted reliably only in frozen tumor, a repeat
biopsy of either metastatic or primary tumor immediately
before trial entry will be necessary. Tumor specimens are
stored for future assay. After confirmation that sufficient
tumor is available for analysis, a patient is randomized to
treatment with compound X or control. A key aspect of this
design is that neither the predictive biomarker nor the

Scher et al.
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analytically validated tests are needed until the time of the
final analysis of the trial.
The primary endpoint for the study is overall survival,

which is the primary regulatory endpoint for new drug
approval for CRPC. A total of 935 patients will be accrued,
and the final analysis will be conducted when there are 700
total deaths. This will provide approximately 90% statistical
power for detecting a 25% reduction in hazard of death for
compound X relative to control at a 2-sided statistical
significance level of 1%. The remaining 4% of type I error
will be used for evaluating the statistical significance of
treatment effect on survival in the adaptively defined bio-
marker subset that is anticipated to derive greater benefit
than the population as a whole. This will provide approx-
imately 80% statistical power for detecting a 37% reduction
in thehazard of death in the adaptively defined subset of the
validation set, which consists of only 33% of the validation
set, as described in more detail below. By splitting the
traditional 5% significance threshold into a portion to be
used for the overall comparison and a portion to be used for
the comparison within the subset, the type I error rate of the
trial is preserved at 5%.
The type I error rate of 5% can be partitioned into a part

for the overall analysis and a part for the subset analysis in a
variety of ways. One could attempt to optimize the split to
minimize the total sample size subject to constraints on the
statistical power for both the overall analysis and the subset
analysis. We have not attempted such an optimization. We
have allocatedmost of the 5% to the subset analysis because
the power of the subset analysis drives the overall sample
size, particularly when a minority of patients benefit from
the new treatment. By taking into account the correlation
between the 2 analyses, less stringent significance levels
could be used (29).
The final analysis will be conducted in the following

manner. A log-rank text will be used to compare survival
times in the 2 treatment arms for all randomized patients. If
the 2-sided significance level is less than 0.01 and favors
compoundX, then compoundXwill be considered effective
for the randomized population as a whole. If not, then the
following analysis will be conducted with the fallback
design of the adaptive signature approach developed by
Freidlin and Simon (12).
A predictive classifier P (B1, B2, B3, B4) will be developed

that identifies whether a patient with biomarker values B1,
B2, B3, and B4 (each representing the result of a specific
validated assay) is likely to benefit from drug X compared
with control C. For the purpose of illustration, we have
arbitrarily specified 4 individual markers that can be used
for building the classifier. The number is arbitrary as long as
the markers and the algorithm for building the classifier
with the candidate markers are specified before the data are
examined and as long as an analytically validated assay is
available for measuring each marker. The value of the
adaptive signature design is greatest when the number of
candidatemarkers is large. The P classifier will be developed
using a randomly selected training set of patients consisting
of 33% of the cases. The split proportion of 33% of the

patients for development and training of the classifier and
67% for evaluation of the classifier is somewhat arbitrary
but influences the ability to develop a good classifier and to
adequately compare the treatment in the subset of the
validation set determined by the classifier. Dobbin and
Simon (30) have studied the optimal splitting of data sets
into a training set and a validation set for prognostic
classifiers, but similar studies have not been reported for
predictive classifiers as used in the adaptive signature
design. We believe that a training set consisting of approx-
imately 233 events should be adequate for developing a
predictive classifier in which accuracy is close to that of the
optimal classifier that could be developed with an infinite-
sized training set, but a quantitative evaluation of this along
the lines described by Dobbin and Simon should be pur-
sued. Reducing the size of the validation set further con-
strains the statistical power of the subset analysis, as shown
below in the paragraph describing how the power for the
subset analysis in the validation set drives the total size of
the study. The advantage of the more recently developed
cross-validated adaptive signature design is that a fixed
training–validation split is not required. (14)

The algorithm for developing the classifier is described in
the Appendix, which follows the Discussion section. The
value of the classifier function C (B1, B2, B3, B4) equals 1 if
the patient with those biomarker values is likely to benefit
from X, and equals 0 otherwise. The set IND of combina-
tions of biomarker values (B1, B2, B3, B4) for which the
classifier equals1 is the indication for treatmentX should the
subset analysis be statistically significant. As part of the final
analysis, this indication will be described graphically, ana-
lytically, by decision tree, and as a classification function.

The training set data are extensively analyzed to develop a
single completely specified classifier. Predictive classifier
development is different from traditional subset analysis.
Although the development algorithm may involve evalua-
tion of subsets determined by single variables, a classifier
must be developed that integrates all such information into
a single function of all the baseline variables to predict
whether a patient will benefit from receiving the new
treatment relative to the control. Although a large body of
literature exists on prognostic signatures, very little litera-
ture is available on predictive 2-treatment classifiers. A
single completely specified classifier should be developed
with the training data. Ifmultiple classifierswere developed,
they would have to be evaluated in the validation set and
that would require additional portions of the type I error
to be allocated to evaluate them.

The estimated improvement in survival for X versus C in
the indicated population IND will be estimated by classi-
fying each patient in the trial who was not included in the
training set used todevelop the classifier. Let Sdenote the set
of patients in this "test set" classified as likely to benefit from
X using C (B1, B2, B3, B4). Kaplan–Meier survival curves
will be computed for the patients in S who received X and
for the patients in Swho received C. The difference between
these 2 survival curves will be summarized with a log-rank
statistic (LR) and a log hazard ratio (LHR) and a 95%
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confidence interval for LHR. If the log-rank statistic LR is
significant at the 4% level of the x2 distribution with one
degree of freedom and the HR of X versus C is less than 1,
then the treatment Xwill be considered effective in improv-
ing survival of patients with an indication specified by the
set IND defined based on the classifier C (B1, B2, B3, B4) as
described above.

The statistical power of the biomarker-specified subset
analysis depends on the proportion of patients who are
included in the adaptively defined subset S. To have 80%
power for detecting a 37% reduction in the hazard of death
for X versusC (a reasonable target effect size given historical
results with predictive biomarker-based treatments such as
trastuzumab), approximately 157 deaths are required in the
classifier-positive subset of the test set of patients (i.e.,
patients not used for developing the classifier). If one third
of patients are classifier positive, then 471 total deaths are
required in the test set. The test set will contain about
two thirds of the patients and events. The total number of
deaths at the time of final analysis will be 700, and hence
this power target should be achievable.

Discussion

For the goal of developing the right drug for the right
patient to become more than a clich�e, sponsors, investiga-
tors, and regulators must recognize that some of the con-
ventional wisdom used to guide clinical trial design and
analysis in the era of broadly targeted cytotoxic agents is no
longer appropriate. Indeed, the continued use of traditional
clinical trial designs is likely to hamper the development of
new drugs that are highly effective for molecularly well-
defined subsets of patients.

The use of conventional, primary site–based approaches
to develop targeted cancer therapeutics is in many cases not
consistent with our knowledge of the underlying biology of
a tumor, exposes patients to toxic drugs fromwhich they are
not expected to benefit, andmay result in long delays for the
approval and ultimately the availability of drugs that offer
substantial benefit to molecularly characterized subsets of
patients. Clearly, in this new era, issues previously consid-
ered to be standard, such as the role of subset analysis, the
role of stratification, the need to have broad eligibility
criteria, and the use of adaptive methods, must be critically
reexamined. However, newmethods for clinical trial design
and analysis must be no less rigorous than conventional
designs in their use of randomized controls, clinically
meaningful endpoints, and protection against type I error.

Methods for adaptive characterization and validation
of the patients most likely to benefit from a new treat-
ment in phase III oncology trials have been developed in
recent years (12–14). The specific designs are adaptive in
distinct ways, but most have focused on intratrial modi-
fication of the number of patients to be included (sample
size reestimation) or modification of the randomization
weights (response-adaptive). Controversies with these
designs include the question of whether adaptive sample
size reestimation is more effective than traditional

sequential analysis methods, whether response-adaptive
methods provide statistical analyses that are robust to
time trends in unmeasured prognostic factors, and wheth-
er response-adaptive methods improve efficiency (10).
As a result, response-adaptive designs are rarely used in
phase III clinical trials.

A more promising area is the adaptive characterization
of patients enrolled inphase III trialswho aremost likely (or
least likely) to benefit from a new treatment. This adaptive
determination of the treatment indication represents a
paradigm shift in phase III clinical trial design with the
potential for a major impact on oncology drug develop-
ment and a major benefit to patients. However, there is a
need for dialogue among academic investigators, govern-
ment and industry sponsors, and regulators on how best to
use this methodology. It was for this reason that this area
of adaptive clinical trial design was chosen for focus by
the members of the adaptive design panel of the 2010
Conference on Clinical Cancer Research.

Use of adaptive methods to identify the patients who are
most likely or least likely to benefit from a new regimen
requires substantial prospective planning. The methods
cannot be used reliably in an exploratory post hoc manner.
In fact, if done improperly they can introduce bias and risk
"disqualifying" a trial as adaptive in the view of the FDA.

The following are some of the key features of the clinical
trial we designed:

1. Use of an acceptable regulatory endpoint such as
overall survival as the primary endpoint for final
analysis.

2. Use of a randomized design with an appropriate
control arm.

3. Obtaining tumor specimens prior to randomization
for all patients registered on the trial. Tumor assays
may be conducted at a later time, but prior to data
analysis, if the analytically validated tests are not
available when the clinical trial is initiated.

4. Use of an intermediate endpoint for interim futility
analysis is considered necessary but not sufficient to
ensure a treatment effect on the primary endpoint,
even though it is not a validated surrogate of the
primary endpoint.

5. Use of analytically validated tests for measuring all
candidate predictive biomarkers.

6. Prespecification of the algorithm to be used for
developing the classifier in the training set, and
prespecification of how the validation analysis will be
conducted.

7. Adequately powering the clinical trial for validation of
a substantial treatment effect in the adaptively
identified subset.

8. At the time of final analysis the patients are randomly
partitioned into a portion (e.g., one third) for training
a classifier that identifies which patients are most and
least likely to benefit from the new treatment, and a
portion (e.g., two thirds) for validating that classifier.
The full set of patients is used for the overall
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comparison of the new treatmentwith the control, but
only the validation set is used for the comparison of
new treatment versus control in the adaptively
determined subset. The type I error is allocated among
those 2 comparisons.

Oncology therapeutics development is in an era of fun-
damental change. The discoveries of both the molecular
basis for human cancers and the heterogeneity of cancer
provide a great opportunity to develop more effective treat-
ments and to properly deliver them to the right patients.
Many challenges remain to be addressed, and some familiar
paradigms require reevaluation. What does not change is
the need for clinical trials that are fundamentally science
based, statistically sound, and responsive to the urgency for
reducing mortality and morbidity from cancer.

Appendix

A wide variety of classifier development algorithms are
possible. The algorithm should be described completely in
the protocol. For the study being illustrated here, the clas-
sifier will be developed by the following algorithm:
A proportional hazards model will be fit to the data for

the combined treatment X and control group. Denote this
model by

log l t; B1; B2; B3; B4; vð Þ=l0 tð Þ½ � ¼ dvþ b1B1þ b2B2

þ b3B3þ b4B4þ v g1B1þ g2B2þ g3B3þ g4B4ð Þ

where n is a binary treatment indicator (n ¼ 1 for X, n ¼ 0

for C), d is the regression coefficient that represents the

main effect of treatment on survival, the bs reflect the prog-

nostic effects of the biomarkers, and the gs are the inter-

action effects that represent the predictive effects of the

biomarkers. The left-hand side of the equation represents

the log hazard relative to the baseline hazard. The markers

will only be binary if a cut point is predefined based on

preliminary data. Otherwise, no cut point will be imposed

on the modeled values.
For a patient with biomarker values (B1, B2, B3, B4), the

LHR if the patient receives treatment X minus the LHR if
the patient receives the control C is

D B1; B2; B3; B4ð Þ ¼ dþ g1B1þ g2B2þ g3B3þ g4B4

By fitting the model to the data, we obtain estimates of
the regression coefficients and a covariance matrix for
these estimates. Hence, for any vector of biomarker

values, we can compute D̂ B1; B2; B3; B4ð Þ in which the
regression coefficients are replaced by their estimates, and

we can compute the variance V D̂ B1; B2; B3; B4ð Þ
h i

. A

binary classifier will be defined by

C B1; B2; B3; B4ð Þ ¼ 1

if D̂ B1; B2; B3; B4ð Þ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V D̂ B1; B2; B3; B4ð Þ
h ir

� c

The patient is classified as likely to benefit from X if the
standardized LHR of X relative to C is less than or equal to
constant c. The constant will be determined by 10-fold
cross-validation within the training set to maximize the
log-rank statistic for treatment effect within the training set
patients classified as likely to benefit from X. Application of
this algorithm to the training data provides a completely
specified classifier that can be used to classify each of the
patients in the validation set. Each patient in the validation
set has biomarker values B1, B2, B3, and B4. By plugging in
these values to the classifier, the patient is classified as likely
or unlikely to benefit fromX relative toC. The patients in the
validation set who are classified as likely to benefit from X
are the subset to be analyzed. In that subset, outcomes for
patients who received X are compared with outcomes for
those who received the control C.

The classifier illustrated here is based on a proportional
hazards regression analysis of 4 biomarker values. Alterna-
tively, variable selection strategies could be used to include
only variables that seem informative for distinguishing
outcome on X from outcome on C. When the number of
candidate variables is large, variable selection is essential. It
should be recognized, however, that the objective is to
accurately classify patients as to whether they will benefit
from X, not to document with statistical significance the
importance of individual variables.
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Special Report

Identification and Elucidation of the Biology of Adverse
Events: The Challenges of Safety Assessment and
Translational Medicine

Kenneth W. Turteltaub1, Myrtle A. Davis3, Leigh Ann Burns-Naas2, Michael P. Lawton2, Adam M. Clark4, and
Jack A. Reynolds5

Abstract
There has been an explosionof technology-enabled scientific insight into the basic biology of the causes of

adverse events. This has been driven, in part, by the development of the various "omics" tools (e.g.,

genomics, proteomics, and metabolomics) and associated bioinformatics platforms. Meanwhile, for

decades, changes in preclinical testing protocols and guidelines have been limited. Preclinical safety testing

currently relies heavily on the use of outdated animal models. Application of systems biology methods to

evaluation of toxicities in oncology treatments can accelerate the introduction of safe, effective drugs.

Systems biology adds insights regarding the causes and mechanisms of adverse effects, provides important

and actionable information tohelpunderstand the risks andbenefits to humans, focuses testingonmethods

that add value to the safety testing process, and leads to modifications of chemical entities to reduce

liabilities during development. Leveraging emerging technologies, such as genomics and proteomics, may

make preclinical safety testing more efficient and accurate and lead to better safety decisions. The

development of a U.S. Food and Drug Administration guidance document on the use of systems biology

in clinical testing would greatly benefit the development of drugs for oncology by communicating the

potential application of specificmethodologies, providing a framework for qualification and application of

systems biology outcomes, and providing insight into the challenges and limitations of systems biology in

the regulatory decision-making process. Clin Cancer Res; 17(21); 6641–5. �2011 AACR.

Introductory Note

At the 2010 Conference on Clinical Cancer Research,
co-convened by Friends of Cancer Research and the
Engelberg Center for Health Care Reform at the Brookings
Institution, participants explored 4 pressing new chal-
lenges in the field. Articles summarizing the panel’s
recommendations on each of these topics are featured
in this issue of Clinical Cancer Research (1–4).

Gaps in Current Testing and Safety Assessment
Paradigms

The toxicity of new oncology drugs is a leading cause of
pharmaceutical attrition and a major impediment to

efficient and successful drug development. Safety, or lack
thereof, is also a major factor in regulatory decisions
involving drug approval, labeling, risk evaluation, and
mitigation and even withdrawal from the marketplace.
The current battery of preclinical safety studies required to
support the clinical development of new drugs and mar-
keting approval is mapped out in International Con-
ference on Harmonisation (ICH) guidelines that include
ICH M3, E14, and S1 to S9 (5). In addition, various other
documents from regulatory agencies provide recommen-
dations regarding specific toxicities or adverse events,
such as hepatotoxicity (6). However, these testing meth-
ods and risk assessments have not kept pace with the
rapid evolution of technology, biomedical research, and
knowledge generation. For example, the studies required
to meet international regulatory guidelines for drug
development and approval rely almost exclusively on in
vivo animal testing protocols and endpoint assessments
that have changed little in decades. These current in vivo
methods as they are being used do not fully predict
complex, serious, and low-incidence effects in humans,
and in many cases are not amenable to generating knowl-
edge that leads to mechanistic insight into the causes or
biology of adverse events (7). Importantly, without rel-
evant knowledge about the pathophysiology of potential
adverse events, we are unable to predict or understand the
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occurrence of low-incidence or idiosyncratic events in
humans, a task that is perhaps the most challenging one
we face in drug development. Although the long history
of in vivo animal studies has served the scientific and
regulatory community well, there is a timely and com-
pelling need to incorporate changes into the earlier com-
ponents of drug discovery and development that can lead
to more focused animal studies. It is clear that no single
new method or testing paradigm will replace entirely
the need for in vivo testing, but adopting new science
and technology on a case-by-case or fit-for-purpose
basis from an array of emerging methods in the safety
scientist’s toolbox has the potential to improve research
and development productivity, enable the ongoing efforts
to understand and mitigate adverse events, and most
importantly, facilitate and expedite the access of new
therapies for patients.

Driven by rapidly emerging technologies, a nascent trans-
formation of the safety sciences has taken place from
empirical, subjective, and observation-based disciplines to
scientifically grounded, objective, and data-driven sciences.
This evolutionhas spawnednewmethods and experimental
tools that are capable of defining the biologic basis of
adverse events at the cellular, molecular, and biochemical
level. These tools include platforms such as genomics,
proteomics, metabolomics, and bioinformatics. Together,
they enable the practice of systems biology. Systems biology
creates the capability to elucidate complex, highly net-
worked, and pleiotropic pathways of toxicities and to iden-
tify specific biomarkers of impending undesirable events
(8, 9). This provides the opportunity for the contemporary
toxicologist to take a more active and visible role in safety-
related decisions. Historically, due to the gap in our knowl-
edge of most toxicities, many safety decisions were based
solely on the perceived risk of a toxicity, and often disre-
garding the potential benefit of a drug. Elucidating the
biology of an adverse event allows the supplanting of
the perception of risk with specific data that form the
underpinning of a robust decision on risk and benefit
(10).With this new knowledge, toxicologists can contribute
to a systematic and objective decision-making process that
identifies patients at risk for serious adverse events and at
the same time enables access to individuals that might
receive maximum benefit.

Emerging technologies, particularly in the areas of sys-
tems biology, biomarkers, and imaging, have begun to be
incorporated into clinical development programs. Modifi-
cations to the conduct of clinical trials include screening of
Investigational NewDrug (IND) applications, microdosing
protocols, adaptive clinical trials, translational medicine,
and riskmanagement planning or riskmitigation strategies.
Regulatory agencies have extended explicit overtures and
shown a readiness to embrace change through the Critical
Path Initiative in the United States and the Innovative
Medicines Initiative in Europe, for example. On a smaller
scale, a great deal has been learned about the utility and
limitations of data derived from new science and enabling
technologies from theU.S. Food andDrug Administration’s

(FDA) voluntary exploratory data submission program (11)
and active participation in a number of scientifically driven
public–private consortia. The recent announcement of
NIH and FDA grants directed at improving drug develop-
ment and regulatory sciences is a timely testimony to the
importance of these topics. The FDA has also sponsored a
number of scientific meetings to solicit broad input into
the challenges of creating and using drug safety knowledge
in the mining of adverse events databases and prediction
of adverse events. These laudable efforts create the oppor-
tunity to articulate a coordinated framework for policy
change that can be understood and engaged by the phar-
maceutical industry and broadly communicated to patients
and the public. The treatment of cancers has undergone
significant advances in the past few years, but as patients are
living longer with their diseases, the onerous effects of
drug treatment begin to emerge. Current topics in the
sequelae of cancer therapy could provide the momentum
and focus to urgently apply new technologies to preclinical
toxicology.

Systems Biology

Systems biology is an attractive complementary appro-
ach to preclinical testing. It has been defined as the
iterative and integrative study of biologic systems as they
respond to perturbations (12). Systems toxicology com-
prises the integration of molecular endpoints and con-
ventional toxicity endpoints into a systems biology
approach. In a sense, contemporary systems biology is
a renaissance of physiology, a traditional integrative dis-
cipline. Biologic research has enjoyed decades of success
in dissecting the structures and functions of individual
molecular and cellular components comprising an organ-
ism. However, the inherent complexity of biologic sys-
tems, due not only to the large number of their consti-
tuents but also to the intricate web of interactions among
these constituents, has proved to be difficult to under-
stand with reductionist approaches. Research must be
conducted at a more global, systems level if we are to
gain understanding of the overall behavior of the biologic
networks that maintain normal physiology and the per-
turbations in these networks that lead to toxicity and
disease. Environmental stressors, including physical and
chemical agents, exert adverse effects by initially imping-
ing on specific molecular or cellular targets. The ensuing
responses triggered from the initial interactions and sub-
sequently propagated along the normal molecular, cellu-
lar, or systemic networks, will ultimately affect the health
of the intact organism. The application of computational
systems biology in risk assessment focuses on developing
quantitative simulation models of the dose-response
relationships for network perturbations by chemical stres-
sors and drugs (13, 14).

Driven by systems biology approaches, significant prog-
ress has been made in the elucidation and characterization
of cellular response networks—the interconnected path-
ways composed of complex biochemical interactions of
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genes, proteins, and small molecules that maintain normal
cellular function, control communication between cells,
and allow cells to adapt to perturbations in their environ-
ment (4). The myriad potential sites of interaction and
impact that any given perturbation might have on a cell or
organ function and the resulting complexity of gaining
insight into how these can affect the entire system can be
envisioned (2). This complexity can only be overcome and
be of utility through the systematic and integrated approach
to manipulation, modeling, and measuring the wide spec-
trum of activities. Mining of complex and disparate data-
bases is essential to generate nonintuitive insights and
testable hypotheses of the causes and sequelae of undesir-
able perturbations. Two case studies that exemplify the
potential of systems biology are discussed below.

Case study 1: Drug-induced vascular injury
This case demonstrates how a systems biology approach

can elucidate the pathophysiology of complex and dynamic
biologic processes, create testable hypotheses related to
these phenomena, and identify potential candidate bio-
markers that can be assessed and validated as an indicator
of the toxicity (15).
No sensitive and reliable biomarker currently exists for

monitoring of the vascular lesions induced by chemicals
in preclinical models (16). Moreover, the pathogenesis of
these lesions in animals is still unclear. Using modern
"omics" technologies, knowledge generation and intelli-
gent networking tools, and targetedmodelingmethods, the
pathophysiology of a well-known but enigmatic phenom-
enon of chemically induced vascular injury has been elu-
cidated. Not only was the application of a systems biology
approach essential to the characterization of the signals and
pathways of these events, but long-sought-after candidate
biomarkers were also identified. This research endeavor
generated over one million data points that were shared
with the FDA under their voluntary genomics submission
program. After a rigorous analysis of the data, FDA scientists
reached essentially the same conclusions about the patho-
physiology of drug-induced ischemia and subsequent
reperfusion.
Phosphodiesterase 4 (PDE4) inhibitors are a class of

drugs that can provide novel therapies for asthma and
chronic obstructive pulmonary disease. Their develop-
ment is frequently hampered by the induction of vascular
toxicity in rat mesenteric tissue during preclinical studies.
Histopathologically, mesenteric vascular injury is charac-
terized by perivascular edema and mixed inflammatory
cell infiltration associated with medial necrosis and hem-
orrhage (17). Whereas these vascular lesions in rats have
been well characterized histologically, little is known
about their pathogenesis, and in turn, sensitive and spe-
cific biomarkers for preclinical and clinical monitoring do
not exist. Development of potentially novel life-saving
therapies has therefore been hindered due to the lack of
biomarkers for drug-induced vascular injury to confirm
that a candidate drug is safe for administration to humans
(18). To investigate the early molecular mechanisms

underlying vascular injury, time-course studies were per-
formed in which rats were treated for 2 to 24 hours with
high doses of a candidate PDE4 inhibitor. Transcriptomics
analyses in mesenteric tissue were performed using oligo-
nucleotide microarray and real-time reverse transcriptase
PCR technologies, and compared with histopathologic
observations. In addition, protein measurements were
performed in serum samples to identify soluble biomar-
kers of vascular injury. The results show that molecular
alterations preceded the histologic observations of inflam-
matory and necrotic lesions in mesenteric arteries. Some
gene expression changes suggest that the development of
the lesions could follow a primary modulation of the
vascular tone in response to the pharmacologic effect of
the compound. Activation of genes coding for pro- and
antioxidant enzymes, cytokines, adhesion molecules, and
tissue inhibitor of metalloproteinase 1 (TIMP-1) indicates
that biomechanical stimuli may contribute to vascular
oxidant stress, inflammation, and tissue remodeling. This
leads to the proposed time-dependent mechanism of
toxicity of PDE inhibitors: (i) ischemia reperfusion-like
injury initiates the toxic response followed by the induc-
tion of oxidative stress; (ii) release of cytokines such as
interleukin-6 (IL-6), TNF, and IL-1B activate the innate
immune response; and (iii) the release of specific molec-
ular mediators, such as leukotriene B4, platelet activating
factor, C5a, and oxidized low-density lipoprotein, induces
an inflammatory response that leads to vascular necrosis.
Indeed, TIMP-1 appeared to be an early and sensitive
predictive biomarker of the inflammatory and tissue
remodeling components of PDE4 inhibitor-induced
vascular injury (19). Importantly, some of the candidate
biomarkers identified by these studies are now being
assessed and potentially validated in animal and human
experiments and may lead to the renewed development
of a very important class of potential therapeutics.

Case study 2: Oncology drug-induced cardiovascular
toxicity

As multiple types of cancer transition from acute to
chronic diseases, the cardiotoxicity of anticancer treatments
has emerged as a serious clinical problem (20). Cardiotoxi-
city can manifest in a variety of ways depending on the
type of anticancer treatment being used. For example,
anthracyclines generate free radicals, causing permanent
myocyte cellular destruction that is related to the cumula-
tive lifetime dose, which limits the usefulness of anthracy-
clines in oncology (21). In contrast, the monoclonal anti-
body trastuzumab can mediate transient cardiotoxicity by
disrupting cardiomyocyte cellular signaling pathways (22).
An understanding of the mechanism of drug-induced
cardiotoxicity is crucial in devising methods to treat or
prevent this toxicity. Ideally, the use and application of
systems biology approaches could provide an opportunity
to facilitate or improve (i) selection of the most effective
therapies, (ii) identification of specific patients at risk for
chemotherapy-induced adverse events, (iii) dose selection
and scheduling decisions, and (iv) identification of early
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signals of emerging adverse events that may enable prompt
clinical responses.

A systems biology approach was used to delineate the
signaling pathways involved in imatinib-induced cardio-
toxicity. Imatinib is a tyrosine kinase inhibitor that is active
against the tyrosine kinase Bcr-Abl in chronic myelogenous
leukemia (CML) as well as in the tyrosine kinase C-kit
in gastrointestinal stromal tumors (GIST). Unfortunately,
imatinib treatment is associated with a 4% incidence of
heart failure (23). To identify the mechanism of this tox-
icity, researchers incubated rat cardiomyocytes with imati-
nib and determined that imatinib induced the endoplasmic
reticulum stress response, leading to cell death (24). The
researchers further demonstrated that imatinib mediates
cardiomyocyte death through its interaction with Bcr-Abl
by transducing into the cardiomyocytes the Abl T315I
point mutation which renders the kinase resistant to ima-
tinib (25). Subsequently, a redesigned imatinib was engi-
neered that inhibited only the C-kit tyrosine kinase and
no longer had activity against Bcr-Abl (26). Although this
redesigned compound was ineffective in treating CML, it
retained its activity against GIST and no longer exhibited
cardiotoxicity in mouse models. These results demonstrate
the potential of systems biology in combination with ratio-
nal drug design to engineer drugs so that their adverse
effects are minimized or eliminated while their desired
anticancer effects are preserved.

A Pathway Forward

The current state of safety sciences and the related emerg-
ing technologies represent an unprecedented and timely
opportunity to make a profound impact on drug develop-
ment and regulatory decision making. By defining, charac-
terizing, validating and integrating new methods and sci-
ence into the regulatory decision-making framework, this
enterprise will improve public health decision making and
enhance the efficiency of bringing new drugs to patients.
Overcoming current challenges of safety assessment
through new technologies will help us (i) understand the
translation (if any) of nonclinical safety signals to the
patient population; (ii) aid in the development of safer
drugs, beginning at the design phase; and (iii) enhance our
understanding of the potential safety impact of a drug on a
particular individual by understanding relationships to key
personal "omic" signatures. These accomplishments would
improve the efficiency of drug research and development
and increase the probability of success, adding value to

patient communities by improving access to promising new
therapies. Moreover, these changes could also have a pro-
found impact on the business model of the pharmaceutical
and chemical industries and help to stem the occurrence of
unanticipated adverse effects in late-stage clinical trials or in
the postmarketing phase, which can quickly halt the devel-
opment or availability of novel therapeutics.

The use of systems biology to characterize the inherent
risks of pharmaceuticals can markedly improve drug
development and postmarketing processes in close col-
laboration with the FDA and other regulatory agencies.
Although resource constraints, computational limita-
tions, and the complexities inherent to human disease
may limit the utility of systems biology, data resulting
from science and methods centered in systems biology
can be readily validated using in vivo models and rapidly
assessed in humans. The evolving concept of systems
biology is starting to be adopted by the pharmaceutical
industry and integrated into the safety sciences. A recent
example of a substantial move forward in this field is the
European Union Framework 6 Project on Predictive Tox-
icology, which compared conventional toxicologic end-
points for several investigational compounds to transcrip-
tomics, proteomics, and metabolomics profiles (27).
These researchers found that the use of systems biology
was instrumental in determining mechanisms of neph-
rotoxicity and hepatotoxicity as well as identifying
potential predictive biomarkers. To realize the true poten-
tial of systems biology and improve drug safety, a more
systematic integration into drug discovery and develop-
ment is needed. As a direct result of this panel discussion,
the FDA has spearheaded an oncology pilot study on
the cardiotoxicity of tyrosine kinase inhibitors with the
hope that a guidance document can be generated to
encourage and accelerate the adoption of systems biology
in the development of drugs for oncology.
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Special Report

Integrating Pain Metrics into Oncology Clinical Trials

Charles S. Cleeland1, Ann O'Mara2, Martin Zagari4, and Carole Baas3

Abstract
Cancer-related pain is highly prevalent and often severe, and as a result is often one of the defining

experiences for patients with malignancy. Patients and patients’ families almost always live with the

ever-present reality that cancer treatment and progression may be accompanied by pain. For patients

nearing the end of life, most fear that their final days will be spent living with the terrible effects of

the disease, the most important of which is pain. Despite this, there is far less systematic research on

the mechanisms of cancer-related pain or on the development of new agents to reduce or eliminate

pain in cancer patients compared with research to combat the disease itself. Further, even when the focus

of research is treatment of the tumor, the effects of anticancer treatments on pain are often under-

reported in publications and other forums. To illustrate the relative drought in the cancer pain control

area, there have been no new drugs approved for cancer-related pain in recent years. A number of

methodologic and logistical challenges that hinder the ability to assess pain response in clinical trials

are discussed in this article. Possible ways to address these challenges are also discussed. Clin Cancer Res;

17(21); 6646–50. �2011 AACR.

Introductory Note

At the 2010 Conference on Clinical Cancer Research,
co-convened by Friends of Cancer Research and the Engel-
berg Center for Health Care Reform at the Brookings Insti-
tution, participants explored 4 pressing challenges in the
field. Articles summarizing the panel’s recommendations
on each of these topics are featured in this issue of Clinical
Cancer Research (1–4).

The Need to Integrate Measures of Pain in
Cancer Clinical Trials

Asmore effective drug products become available to treat
cancer, survival rates for many types of cancers have
improved. Patients are not only living longer with cancer,
but they are also living longer with symptoms associated
with both cancer and its treatment. Cancer-related pain and
other symptoms, such as fatigue, disrupted sleep, and
psychosocial distress, have a significant impact on func-
tioning and health-related quality of life (5–8). With the

availability of more effective treatment options, oncology
product development programs are targeting add-on, sec-
ond-line, or advanced disease indications in addition to
first-line therapy. As a result, in addition to including
objective measures such as overall survival and tumor
response, oncology clinical trials are also targeting improve-
ments in patient-reported cancer-related symptoms.

Cancer-related pain is a frequently reported and distres-
sing symptom associated withmanymalignancies. A recent
systematic review indicates that approximately half of
patients with solid tumors have pain, and that, of those
with pain, one third report pain that is moderate to severe
(9). Analgesics are the mainstay of therapy in treating
cancer-related pain (10). However, chemotherapeutic
agents that demonstrate evidence of pain reduction or of
a delay in the onset of pain in addition tomeeting standards
of efficacy could provide a significant treatment benefit
for the patient. As a result, some oncology clinical trials
have included measures of pain in study designs (11–13).
However, the number of patients enrolled in oncology trials
that examine pain as an outcome is a fraction of those
receiving care, even in the setting of a clinical trial, resulting
in a paucity of quality of evidence of treatment effects on
cancer pain. Carefully designed trials with cancer pain relief
as a primary or secondary outcome are required in patients
with well-defined disease and pain.

Adequately Measuring Subjective Pain in Clinical
Trials

Adequately and reliably measuring and interpreting sub-
jective endpoints such as pain can be challenging. Random-
ized clinical trials in oncology from 1996 through 2001
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have included at least 125 different pain outcomemeasures
(14). Different pain outcome measures may evaluate dif-
ferent aspects of pain, such as pain intensity, pain interfer-
ence (the extent to which pain interferes with daily living),
or pain relief. The most commonly used scale is a numeric
rating scale,where patients typically rate their pain from0 to
10, with 0 representing no pain and 10 corresponding to
worst pain imaginable. Other scales (verbal descriptor
scales) use graded adjectives (mild to severe) to represent
increases in severity. Finally, the visual analog scale may be
used in acute (postoperative) pain studies, where patients
indicate on a line their pain intensity. Other domains that
might be assessed include the degree to which pain inter-
feres with physical and emotional function. The Brief Pain
Inventory (BPI) is an example of a measure that samples
both severity and interference, as well as the degree towhich
trial participants believe a therapy has helped their pain
(15). Measures of pain relief are similar to those for pain
intensity, except that patients are asked to rate how much
relief they have experienced relative to their previous pain
levels following some intervention. Some pain metrics
provide a more qualitative assessment of cancer pain, such
as the McGill Pain Questionnaire (MPQ) which scores
sensory, affective, evaluative, and miscellaneous pain
(16). The pain metrics listed above, and others, are
described in detail in a systematic review of 164 studies of
cancer pain comprising over 35,000 adult cancer patients
(17). This report discusses the utility, validity, and reliability
of thesemeasures andprovides recommendations for select-
ing the appropriate pain measure depending on the situa-
tion. More recently, consensus reviews both in the United
States and Europe indicate that, at a minimum, a numeric
rating scale of pain severity is acceptable as a unidimen-
sional measure of pain, and is quite easy to implement in
most clinical trials (18, 19). Thus, despite the subjective
nature of pain, reliable methods exist to measure pain and
the challenge now is to integrate thesemethods into clinical
trials in a way that results in meaningful improvements for
patients suffering from cancer pain.

The Challenge of Incorporating Pain Metrics into
Oncology Clinical Trials

In 2009, the U.S. Food and Drug Administration (FDA)
"Guidance for Industry: Patient-Reported Outcome Mea-
sures: Use in Medical Product Development to Support
Labeling Claims" was published (20). The guidance
describes how FDA reviews patient-reported outcome
(PRO)measures that are used to support claims in approved
product labeling. The guidance defines a PRO as any report
of the status of a patient’s health condition that comes
directly from the patient without interpretation of the
patient’s response by a clinician or anyone else. The guid-
ance notes that, like other endpoints in a clinical trial, a
PRO measure must be well-defined and reliable and show
evidence that it is an adequate measure of the specific
concept it was designed to measure. Based on the FDA
PRO Guidance principles, symptoms known only to the

patient, such as cancer-related pain, are best evaluated by a
self-reported measure. The measure should be comprehen-
sible, interpretable, and appropriate for the target popula-
tion. In addition to selecting the actual painmeasure, based
on the FDA PRO Guidance, it is also important to consider
how the pain measure will be incorporated in the clinical
trial. The endpoint model describes the relationship of
all endpoints, both PRO and non-PRO, in a clinical trial
(e.g., primary, coprimary, or secondary). The endpoint
model is critical in the implementation of the painmeasure
in the clinical trial.

Although the FDA PRO Guidance lays out general prin-
ciples for developing PROmeasures and endpoints, it is not
specific to the issue of painmeasurement in oncology. There
are many uncertainties and methodologic challenges to
consider in incorporating pain endpoints in oncology clin-
ical trials. For example, if a sponsor plans to include pain as
an efficacy endpoint in a pivotal trial, the sponsor will need
to determine whether pain should be used as a primary or
coprimary endpoint as opposed to a secondary endpoint.
If pain is an endpoint, the endpoint model must be
constructed to appropriately interpret study results with
consideration for the impact of treatment on tumor burden
in addition to pain. The sponsor must find some way to
measure and differentiate between "cancer-related pain"
and "treatment-related pain" (e.g., chemotherapy-induced
peripheral neuropathy) in the context of the proposed trial.
In addition, the sponsor must determine how to design
the trial to include the appropriate frequency of pain assess-
ment in order to answer the trial question but not burden
patients. Specific enrollment criteria, including level of
pain, also need to be considered for pain palliation trials,
and there is no firm definition of what constitutes "signif-
icant pain."

In addition to these issues, sponsors must also address
analgesic use by patients within the trial. Analgesic use
must be monitored, and it may be difficult to differentiate
pain relief provided by the analgesic from pain relief pro-
vided by the cancer treatment. Additionally, it may be
hard to adequately measure and compare pain severity
and pain relief when patients enrolled in the trial are taking
different baseline and rescue analgesics. Because of these
issues, the sponsor will need to use a pain endpoint that
includes assessments of both pain and analgesic use.

There are statistical considerations for including pain as
an efficacy endpoint in oncology clinical trials as well. For
example, a pain palliation trial must include a placebo arm,
and blinding will most likely not be possible. Therefore,
the sponsor will need to find or develop strategies to
minimize unblinding in palliation trials. The sponsor will
also need to find strategies to minimize missing data,
particularly when data are self-reported.

Potential Scenarios for Adding Pain Metrics to
Chemotherapy Clinical Trials

In order to explore specific examples of how pain metrics
could be introduced into a clinical trial and how those

Pain Metrics
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metrics could serve as decision-making criteria for the
regulatory approval process, we present here 3 hypothet-
ical clinical trial scenarios in which changes in pain or use
of analgesics might be an outcome. In 2 of the scenarios,
pain progression or palliation are assessed as secondary
outcomes in a clinical trial of a new chemical entity,
whereas in the third scenario pain palliation is a primary
outcome for a new agent designed to reduce pain when
the agent is added to an approved, second-line therapeu-
tic. For these scenarios, metastatic castration-resistant
prostate cancer (CRPC) is used as an example because
large numbers of CRPC patients have significant pain for
long periods of time (21). In addition, pain has been used
in the past as a trial outcome for CRPC patients, and
some trials with this patient population have used pain
relief as a primary endpoint (22, 23). Although CRPC is
used as an example here, these scenarios can be general-
ized to other cancer types. The design and measurement
challenges may be addressed differently depending on the
scenario. These scenarios are not intended to reflect
regulatory thinking.

Case 1: Pain progression
In this scenario, a chemotherapeutic agent that may

prevent pain progression in addition to treating HRPC is
being tested relative to placebo in chemotherapy-na€�ve
patients. This blinded, randomized trial will enroll patients
with the following pain medication use profile: patients
who have received no more than 1 day of opioids in the
previous 14 days, or patients who have received no more
than 6 days of nonopioids in the prior 14 days. Presumably,
these are patients whose pain required episodic rather than
more continuous treatment.

This trial could use a patient-reported outcome assess-
ment with a 0-to-10 numerical rating scale. Data collec-
tion would occur daily for 4 weeks and every 12 weeks
thereafter until disease progression is confirmed, and
subsequent analysis will attempt to determine if a single
daily pain assessment is representative of the pain expe-
rienced by patients. The time to pain progression in this
scenario is defined as an increase in the worst daily pain
of more than 2 points as measured by the numerical rating
scale, by the initiation of opioid analgesic use in those
patients who had not taken opioids for cancer-related pain
at the study’s initiation, an increase in opioid use to more
than 3 days over a 14-day period in patients who had used
opioids as needed prior to the study, or the start of bone-
directed radiotherapy for pain palliation. The time to pain
progression will serve as a secondary outcome for the
purposes of seeking regulatory approval for this new
agent.

Case 2: Pain palliation
This scenario adds pain metrics to a clinical trial

being run on a second-line chemotherapeutic agent in
combination with prednisone in patients with hormone-
refractory prostate cancer (HRPC) who have experienced
failure of taxane-based therapy. While overall survival will

be the primary endpoint, pain progression and pain
response will be important secondary endpoints. This
trial is designed as a randomized, open-label multicenter
study with one arm consisting of the new agent combined
with prednisone and the other arm consisting of mitox-
anthrone and prednisone. The patient population will
have experienced documented disease progression during
or within 6 months after prior hormone therapy and
taxane therapy.

In this trial, pain and neuropathy might be assessed
using the MPQ, which measures important neurosensory
symptoms that patients might not describe as pain, such
as numbness, as well as pain severity, and records
analgesic use quantified as an analgesic score derived
from a patient-kept analgesic diary. Pain will be assessed
prior to every treatment cycle and at the end of the study
with the goal of determining if pain and analgesic use
assessment should be part of the inclusion criteria for the
study.

Case 3: Pain palliation with product add-on
The third scenario is designed to use pain metrics to

assess the efficacy of a medication designed to ameliorate
pain in combination with an approved chemotherapeu-
tic. In this trial, patients with stable baseline pain and
analgesic use who have relapsed after first-line therapy
will be randomized to receive second-line therapy in
combination with either the new pain palliation drug
candidate or placebo. In this trial, the primary endpoint
will be the extent of permanent pain palliation as mea-
sured using a combination of the BPI short form (BPI-SF)
and an analgesic log. Secondary endpoints will assess
whether patients receiving drug, as opposed to placebo,
have a longer time to pain progression or have less pain-
induced interference with their ability to walk, work, and
sleep.

This study will attempt to answer a number of questions
relating to painmetrics, including how to defineminimum,
maximum, and stable pain, and how to define stable
analgesic use in the context of which analgesics are used,
such as nonsteroidal anti-inflammatory drugs or long-act-
ing opioids. This scenario also calls for determining the
optimal frequency for pain assessment and quantifying
the degree and duration of pain reduction and analgesic
use that is clinically meaningful.

Conclusions and Next Steps

Cancer-related pain is arguably the physical ailmentmost
feared by cancer patients (24, 25). Yet while clinical trials
designed to assess the efficacy of new therapies for cancer
include a variety of measures to assess a patient’s physical
response to therapy, these trials often do not include pain as
either a primary or secondary outcome. Furthermore,
clinical trials in oncology often fail to assess other symp-
toms or aspects of quality of life. Especially with patients
who have more advanced disease, simple PROmeasures of
additional symptoms, such as fatigue, sleep disturbance,
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gastrointestinal function, and mood impairment, add sig-
nificantly to what patients and providers can expect of
treatments (26).
As discussed in the PRO Guidance, PRO measures of

symptom reduction can be direct indicators of treatment
benefit, but barriers still exist to including pain endpoints
in trials. In addition to the methodologic challenges
discussed above, sponsors face logistical challenges in
measuring pain in oncology trials. There is a high degree
of uncertainty regarding what pain measurement end-
points the FDA will accept and what changes they will
find clinically meaningful. This level of uncertainty, cou-
pled with the expense associated with the measurement of
pain in clinical trials, can make sponsors reluctant to
measure pain palliation or prevention in oncology.
Increased dialogue between the FDA and sponsors is
recommended early in product development to plan the
most efficient path forward for PRO measurement. The
development of an oncology-specific pain-measurement
guidance that details the standards for trial design, the
number of trials required to incorporate pain measure-
ments into labels, the pain instruments that FDA will

accept, and standards for statistical analysis, as well as
other methodologic issues, would greatly benefit the
cancer community. Such a guidance would facilitate
the incorporation of pain relief into oncology trials with
the ultimate result of cancer patients not only living
longer but experiencing a higher quality of life.
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Special Report

Using Patient-Initiated Study Participation in the
Development of Evidence for Personalized Cancer Therapy

Laurie Fenton Ambrose1, Jamie Freedman2, Kenneth Buetow3, Stephen Friend4, and Richard L. Schilsky5

Abstract
Personalized cancer therapy offers the promise of delivering the right treatments to the right patients to

improve patient outcomes andquality of life, while reducing exposure to ineffective therapies and the cost of

cancer care. Realizing this promise depends in large part on our ability to generate timely and sufficiently

detailed information regarding factors that influence treatment response. Generating this evidence through

the traditional physician investigator-initiated clinical trial system has proved to be challenging, given poor

recruitment rates and low compliance with requests for biospecimen collection. As a result, our current

understanding of treatment response is inadequate, particularly for cancer therapies that have been inuse for

many years. Patient-initiated study participation may offer a new model for evidence generation that

capitalizes on strong patient interest in furthering research to inform better and more tailored cancer

therapies. In this approach, patients are engaged and recruited directly by the sponsor of an Institutional

Review Board–approved study, and patients subsequently drive the participation of their health care

providers to facilitate collection of required data and tissue samples. The ultimate goal of these studies is to

generate evidence of sufficient quality to inform regulatory decisions (i.e., labeling changes for marketed

therapies to reflect populations most likely to respond) and treatment selection. Here, we describe a

hypothetical prospective observational study in non–small cell lung cancer that could serve as a model for

patient-initiated study participation applied to understand molecular determinants of treatment response.

Key elements discussed include study design, patient engagement, and data/biospecimen collection and

management principles. Clin Cancer Res; 17(21); 6651–7. �2011 AACR.

Introductory Note

At the 2010 Conference on Clinical Cancer Research, co-
convened by Friends of Cancer Research and the Engelberg
Center for Health Care Reform at the Brookings Institution,
participants explored 4 pressing challenges in the field.
Articles summarizing the panel’s recommendations on each
of these topics are featured in this issue of Clinical Cancer
Research (1–4).

Predicting Response or Non-Response to
Approved Oncology Therapies

Approval of new cancer drugs by the U.S. Food and Drug
Administration (FDA) relies upon safety and efficacy data
from population-based trials. To date, such trials have

typically employed tumor classification systems that do not
fully account for the growing body of genomic knowledge
regarding tumor diversity (5). When drugs evaluated in
these trials are approved and become standard of care, the
implications of failing to account for tumor diversity
become apparent. Standard-of-care cancer therapies may
benefit only one in four patients, leaving upwards of 75%of
patients without effective initial therapies and at risk of
experiencing only toxic effects (6).

The goal of personalized cancer therapy can be achieved
through the development of new therapies or the selective
use of existing therapies in patients more likely to benefit.
Designing new targeted therapies requires a clear under-
standing of the tumor biology and how it varies in the
patient population. In cancers for which this understanding
is still developing, an alternative approach is to study
variations in response to available treatments in search of
biomarkers that predict favorable outcomes. In cases where
adequate evidence can be developed, a primary goal would
be to modify the label of a marketed drug to specify the
patient subgroupsmost likely to benefit or those unlikely to
benefit. Such a post-approval labeling change happened
recently in the case of cetuximab, a member of the class of
cancer drugs known as epidermal growth factor receptor
(EGFR) inhibitors (7).

For older drug products, existing datamay not contain the
needed genomic information to identifymarkers of response
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ornonresponse.Moreover, in the traditional physician inves-
tigator-based patient recruitment model, the clinical trials
necessary to expand our knowledge are plagued by low
enrollment and poor compliance for biospecimen collection
(8). When genomic data are to be collected in pivotal trials,
the current practice relies on optional genomic patient con-
sent (either prospective or retrospective), which results in
convenience, and potentially biased, genomic sample data
collection (9). The genomic consent rates vary from trial to
trial, making study results very difficult, if not impossible, to
interpret when the compliance rates are low (10).

One potentially promising avenue for developing such
evidence rapidly lies in directly engaging patients to partic-
ipate in studies that collect detailed information about their
tumors, treatments, and clinical outcomes. We define
patient-initiated study participation as a model in which
patients are engaged and recruited directly by the sponsor of
an Institutional Review Board (IRB)–approved study, and
patients in turn drive the participation of their physicians
and other health care providers to facilitate collection of
required data and tissue samples. As part of such a study,
patients who receive cancer care from their usual providers
would volunteer to donate certain biospecimens and clin-
ical information to the study sponsor prior to treatment
initiation andover the course of treatment. The goal of these
studies is to use patient biospecimens and other data to
identify molecular markers of treatment response that can
be used to select treatment for future patients.

Recognizing the promise of this approach, advocacy
groups such as the Love/Avon Army of Women, the Lung
Cancer Alliance and others have begun to mobilize their
networks to generate data through patient-initiated par-
ticipation (11–15). For example, the Love/Avon Army of
Women Initiative is attempting to recruit one million
healthy women (including breast cancer survivors and
women at risk for breast cancer) to participate in breast-
cancer related studies (11). As of May 2011, over 354,000
women and men had registered online and 50 studies
have been launched after successful matches were made

between interested participants and researchers (16).
These initiatives speak to the motivation and commit-
ment of patients and their families to advancing cancer
research in general and personalized cancer care in par-
ticular. By providing patients with tools to enroll them-
selves and their providers in studies (thereby flipping the
traditional provider-initiated approach), these efforts
demonstrate the promise of patient-initiated participa-
tion for rapid accrual of large amounts of detailed expo-
sure and outcomes data to answer a range of important
questions in cancer care, including how to better target
therapies. To ensure that these efforts result in actionable
information, what is needed now is a clearer understand-
ing of how such data can be most effectively collected
(e.g., through improved education for involved parties)
and used to inform the decisions of doctors, patients,
regulatory authorities, and payers.

Data Required to Identify Patient Subsets

Developing evidence to support targeting available treat-
ments to a subgroup of patients requires collecting detailed
andhigh-quality data. These data canbe thought of in layers
of comprehensive, longitudinally linked information so
that treatments can be tracked over time and within sub-
groups of patients. In addition to basic information like
demographics, clinical laboratory results, and medical his-
tory, needed layers will likely include normal tissue sam-
ples, tumor and other biological specimens, detailed infor-
mation on treatment exposure, adverse events, and clinical
outcomes (Fig. 1).

Few data sources currently have the breadth and depth of
information necessary to support analyses with sufficient
statistical power to identify biomarkers of response or
nonresponse. Furthermore, changing FDA-approved labels
and recommended standards of care requires robust evi-
dence built on high-quality data and an acceptable study
design. We envision collection of these data through post-
approval studies inwhich genomic data frombiospecimens

Demographic data Age, sex, race/ethnicity, smoking status

Diagnostic and general 
health status dataLab results and medical history 

Detailed biologic data Tissue samples or tumor specimens 

Detailed clinical data
Detailed treatment exposure and precise 
clinical outcomes
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Figure 1. Layered data required to
assess patient subsets.

Ambrose et al.

Clin Cancer Res; 17(21) November 1, 2011 Clinical Cancer Research6652



are used to identify biomarkers predictive of clinical out-
comes. Several factors can affect the ability to generate
useful data from a genomic biomarker trial: (i) the prev-
alence of the target biomarker in the population; (ii) the
prognostic impact of the biomarker to distinguish clinical
outcomes in the population; (iii) concordance of bio-
marker expression between primary and metastatic tumor
tissue; (iv) qualification and validation (analytical and
clinical) of the biomarker assay; (v) availability of tissue
specimens containing the biomarker; and (vi) quality and
quantity of the tissue samples for biomarker analysis.
Each of these factors will need to be addressed in any
study of this nature.

Hypothetical Proposed Study

To help illustrate the issues, challenges, and potential
solutions in using data generated through patient-initiated
study participation for the purpose of informing labeling
changes for existing cancer therapies, we examine study
design considerations within the context of treatment for
non–small cell lung cancer (NSCLC). First-line treatment
forNSCLC typically consists of chemotherapywith a 2-drug
regimen containing either cisplatin or carboplatin and
another agent, which is typically vinorelbine, paclitaxel,
docetaxel, gemcitabine, or pemetrexed. Experience with
these regimens indicates that only approximately 30% of
patients respond favorably (17).
To identify molecular signatures that explain variation in

treatment response, several initiatives, including the Sage
Bionetworks Non-Responder Project, are working to design
studies that identify predictivemarkers of nonresponse. The
Non-Responder Project has chosen several candidate
tumors to study, including NSCLC, with an initial pilot
study in acute myelogenous leukemia (5) based on 4 "first
principles" for tumor selection (Fig. 2).
Informedby this andother related efforts, the objective of

the proposed study is to identify one or more molecular

markers of nonresponse to first-line platinum-containing
therapies formetastatic NSCLC, with the goal of supporting
the revision of FDA-approved labels and recommended
standard of care for these drugs.

The proposed study would begin when a patient with
NSCLC is nearing a treatment decision and becomes aware
of the opportunity to participate in the study by means of a
website description or other form of outreach. This patient
would approach his or her physician for support to enroll in
the study. After enrollment, biospecimens would be col-
lected from the patient at a designated research center and
then the patient would return to the care of their oncologist.
Meanwhile, tumor specimens would be analyzed in a
Clinical Laboratory Improvement Amendments–certified
laboratory for known and clinically actionable genetic
variants. If clinically actionable results are identified from
the research analyses, they would be returned to the patient
and treating oncologist. Within the context of this hypo-
thetical study, the study sponsor would determine what
constitutes clinically actionable information on the basis of
currently available evidence. Only clinically actionable
results would routinely be shared with patients and provi-
ders; however, full results would be available upon request.
Together, the patient and oncologist would select the most
appropriate treatment approach (which may or may not
rely on the results of tests performed in the study) from
among the standard targeted or platinum-based therapies,
and the provider would collect and report additional data
on clinical outcomes over time. These longitudinal data
would eventually be compiled, linked to other sources of
electronic clinical data, and made available to qualified
researchers.

Details regarding the proposed study design, including
population characteristics, sample size, and key endpoints,
are provided in Fig. 3. Analyses would be prespecified in the
IRB-approved study protocol. Included in this study design
would be the necessary and appropriate statistical analysis
along with the network-biology modeling done to identify

Figure 2. Sage Bionetworks
Nonresponder Project: First
Principles for Tumor Selection.

 The treatment under investigation should have substantial response and 
nonresponse rates (>20% in either group). 

 The disease must have clear, robust definitions of response and nonresponse that 
are clinically important. (A nonresponse biomarker should have the potential to 
change clinical practice.) 

 Routine clinical management of the disease guarantees access to high-quality tissue 
specimens. (Use of archival tissue from diagnostic samples introduces risk when 
assessing treatments given at relapse.) 

 The nonresponse group should ideally be defined as patients refractory to 
treatment rather than those who respond then relapse early. (If early relapse is 
caused by a resistant subpopulation at diagnosis, genomic analysis of tissue at 
diagnosis may or may not be informative, depending on the size of the resistant 
pool.) 

Sage Bionetworks Nonresponder Project:
First Principles for Tumor Selection   
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not just isolatedmarkers for nonresponder populations but
also sets of genes or "gene signatures" capable of identifying
nonresponders. The goal for lung cancer might be to iden-
tify patients who have more than an 85% chance of not
responding with a certainty of this outcome of 90%. This
certainty around the likelihood that a patient may not
respond would need to be set at a predetermined level of
stringency to enable clinicians to use this information to
determine whether to forego the original approved therapy
and instead provide the patient an opportunity to receive an
investigational regimen. The criteria for foregoing standards
of care would be tumor and regimen specific and would
need to be agreed to upfront with regulators and clinicians
before the study is started.

Feasibility of Patient-Initiated StudyParticipation

While patient-initiated study participation offers prom-
ising opportunities for more efficient and dynamic clin-
ical trial enrollment, a number of feasibility issues must
be considered during data collection so that resulting data
are relevant for regulatory and other forms of decision
making.

Patient engagement
Patient-initiated study participation begins with raising

awareness of participation opportunities, achieving
patient/family engagement, and supporting patients/fami-
lies through the process of enrolling in the study. Patient
advocacy groups are positioned to play a key role in edu-

cating patients and their families regarding the importance
of study participation and how the clinical research process
works. In order to ensure optimal patient participation, we
recommend that patient-initiated study participation
efforts do not impose any sort of fees on patients. Instead,
organizers of such efforts should absorb any associated costs
or such costs should be incurred as part of routine cancer
care.

As with any biomedical study, sponsors of studies
employing patient-initiated participation must be careful
to identify potential ethical concerns, address themasmuch
as possible through study design, and ensure they are clearly
communicated during the consent process. In some ways, a
study such as the one proposed poses a narrower range of
ethical concerns because it is not a treatment trial, but rather
an observational study intended to enhance our under-
standing of response to established treatments. Even so,
important issues to consider may include, but are certainly
not limited to, the timing and nature of informed consent
(e.g., if consent is obtained by study sponsors without the
patient’s provider present to offer guidance), clear commu-
nication of what results will and will not be returned to
patients and providers, and anticipated risks of biospeci-
men donation that are above and beyond those associated
with routine cancer care.

Role of health care providers
Health care providers can help to inform patients of the

importance of study participation, streamline the consent
and biospecimen collection process, and counsel patients

Study objective:  To identify molecular markers predictive of 
nonresponse to approved NSCLC therapies

Study design:  Single-arm prospective observational study

Eligible 
population:

Patients recently 
diagnosed with 
NSCLC and to be 
treated with front‐
line chemotherapy 
containing a 
platinum agent

Sample size:  

Calculation will 
depend on the 
strength of the 
effect and must 
account for drop‐
outs and absence 
of tumor tissue for 
analysis

Biospecimens:
Fresh frozen 
tumor samples 
from 2 core 
needle biopsies 
and normal tissue 
(peripheral blood 
mononuclear 
cells) collected 
prior to treatment 
initiation

Patient data:

• Demographic data
• Tumor stage and histology
• Chemotherapy start and stop dates
• Tumor measurements pre‐, during, and 

post-treatment
• Grade 3–5 treatment‐related toxicities 

by treatment cycle
• Date of tumor progression
• Date of death

Lab analysis:  
Analysis for known and clinically actionable genetic variants in a 
CLIA-certified laboratory, prioritizing whole-genome sequencing, 

mRNA gene expression arrays, and microRNA profiling

Primary clinical endpoint:
Treatment response versus nonresponse based on tumor 
measurements using RECIST criteria within 6 months of study entry:

• Response to therapy: unidimensional reduction in size ≥30%
• Progression of disease: increase in size ≥20%
• Stable disease: size changes between these thresholds

Figure 3. Design for hypothetical
observational study. RECIST,
Response Evaluation Criteria in
Solid Tumors.
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regarding potential health risks. In addition, health care
providers assume certain formal responsibilities in the
context of patient-initiated study participation. Once a
patient decides to participate, they rely on their health
care providers to provide the sponsor with medical
records and possibly to perform relevant procedures,
such as biopsies. As described above, the costs associated
with these procedures should not be imposed on patients,
and they also should not fall to providers. These costs
should be covered as part of routine cancer care or should
be absorbed by the study sponsor, as appropriate. To
facilitate effective provider cooperation, organizations
leading patient-initiated study participation efforts
should consider proactively identifying interested provi-
ders and providing them with detailed information about
the initiative and what level of provider involvement is
expected.

Sample collection
When necessary, collection of biologic samples must

address specific challenges. In general, normal tissue (e.g.,
blood, skin, or hair follicles) is easier to collect than
tumor specimens. However, even these samples may
require more complex sample collection schemes (e.g.,
peripheral blood mononuclear cells from whole blood)
that call upon specialized collection methods and exper-
tise at the clinical sites. Tumor samples are generally more
difficult to collect because they require invasive proce-
dures and because the quality of the specimens may be
highly variable. Certain anatomic sites (e.g., skin or
lymph nodes) are more amenable than others for collec-
tion of tumor specimens. Primary lung cancer specimens
are very hard to collect because of location. If an assay for
archival tissue is available from the original surgically
obtained tumor specimen, such a sample might allow the
highest yield if deemed scientifically appropriate to meet
the study objectives.
During sample collection and all subsequent phases of

storage and analysis, great care must be taken to ensure that
biospecimens are of highquality. In an effort to improve the
quality and standardization of biospecimens collected for
cancer research, the Office of Biorepositories and Biospeci-
men Research within the National Cancer Institute (NCI)
has launched several initiatives, including the development
of best practices for biospecimen collection, processing,
storage, retrieval, and dissemination (18). Although adher-
ence to these best practices is voluntary, these standards
and recommendations should be consulted in any patient-
initiated study participation effort that involves biospeci-
men collection.

Sample compilation and storage
After samples and other data are obtained from

patients, processes must be developed to efficiently
compile and integrate them. Efforts that rely on patients
to directly transfer data (e.g., computed tomography
scans) to the study organizer will be more direct and
simple to accomplish. Obtaining biospecimens from

patients may be more challenging because patients are
typically not the "owners" of these samples and coor-
dination must occur with health care providers. Such
coordination may be more feasible if sample collection
occurs at designated collection facilities and if relation-
ships have been previously established with a core set of
providers. As patient data/samples are collected, they
should ideally be stored in a way that preserves the
ability to link to other sources of electronic clinical data
(e.g., from electronic health records) while protecting
confidentiality. This measure is critical to creating the
type of layered data necessary to identify markers of
response and nonresponse.

Data access
To fully realize the goal of patient-initiated study par-

ticipation, we recommend that data be compiled and
made available free of charge in a standardized electronic
format to all qualified researchers, rather than restricting
access to a particular investigator or team. This availabil-
ity will enable the widest possible access to patient data,
and therefore the greatest possibility for important
discoveries.

Patient privacy and data security
Ethical use of the data and samples requires review to

ensure protection of human subjects, as well as assurance of
patient privacy and data security. To this end, it is necessary
to establish a "trust fabric" that grants access only where
appropriate and only to data components that have been
authorized [Health Insurance Portability and Accountabil-
ity Act (HIPAA)] or consented to (Office for Human
Research Protections) by the patient. Patients should be
clearly advised that their donated data would be accessible
to researchers and that the product of the research may be
commercialized. The level of identification risk associated
with donating their data must be transparently communi-
cated to the participating patients and informed consent
obtained. Because HIPAA assigns responsibility for protec-
tions to local groups that hold patient information, this
trust fabric should recognize the need for local control of
data release.

Patient privacy should be protected by removal of all
HIPAA "identifiers" and by agreements that no parties may
seek reidentifying information except for research covered
by the informed consent. Double deidentification may
provide further privacy protection with the use of 2 levels
of coding between HIPAA "identifiers" and information
relevant for research purposes (e.g., health outcomes or
genetic/genomic test results). Use of this approach increases
the stringency of privacy protection, while retaining the
potential for future analyses building upon the collected
data, which is not the case with other methods (e.g., total
anonymization).

Patient-initiated study participation efforts should allow
controlled access to patient-level data, and researchers seek-
ing such data would have to make appropriate commit-
ments including the following: (i) use only for approved

Patient-Initiated Study Participation
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research; (ii) no sharing of data/samples with others with-
out such sharing having been referenced in the consent
form; (iii) no effort to reidentify; (iv) return of unused
biospecimens to the repository; and (v) the repository
would be obligated to confirm that the proposed research
is consistentwith the scopeof the consent forms and to track
the disposition of all specimens.

Governance
Governance policies are required to establish oversight

of data collection and use. This is essential to maintain
aspects of compliance, privacy, and access to data and
models within the project. Existing projects involving
clinical/genomic data set generation by structures such
as the Cancer Biomedical Informatics Grid (caBIG), The
Cancer Genome Atlas, and trials such as the BATTLE trials
and the I-SPY trial network provide precedents for estab-
lishing these governance rules and processes. Relevant
policies may pertain to the use of data collected and how
to ensure that the effort uses a sustainable funding model,
among other topics.

Regulatory submissions
One potentially important issue involves the types of

entities thatmight bring data forward to a regulatory agency
as a result of patient-initiated study participation. Given
that such effortsmay be spearheaded by nonprofit as well as
commercial organizations, it is possible that a nonprofit
organization, not affiliated with a commercial product
sponsor, might develop and submit data on molecular
markers associated with response/nonresponse to an
approveddrug for reviewbya regulatory agency. It is unclear
whether there is a pathway for evidence to be brought to the
FDA by these nontraditional sponsors. If the evidence
pertained to a biomarker for treatment response in general
and without reference to a particular drug under develop-
ment, one potential pathway might be through the FDA’s
recently proposed qualification process for drug develop-
ment tools. In such cases, if the biomarker is qualified, it
could be incorporated into any future drug development
based on the qualified context of use. However, the process
for translation of evidence from patient-initiated study
participation into labeling changes may still require clarifi-
cation and consideration regardingwhether data arose from
a specific drug development program as opposed to a
postmarketing study. Such changes might occur indepen-
dently of the product sponsor and possibly without the
sponsor’s agreement. Arguably, these changes would likely
be in the interest of the patient community and society in
general, but they might not always be in the interest of
product sponsors.

Principles for Effective Management of Patient-
Initiated Data Collection

Aswith any clinical research, it is essential that data beof a
standard form for analysis. In traditional research settings,
standardization of multiple data sources is accomplished

through use of common data collection forms and adher-
ence to common practices in form completion. Years of
practice in the oncology community have produced a large
library of these common data elements using terminologies
and ontologies that are national and international stan-
dards. In a partnership among academia, industry, and the
FDA, these elements and ontologies have been used to
create a common information model that supports elec-
tronic regulatory submission. Wherever possible, data col-
lection should leverage these and other standard informa-
tion representations.

Data generated through patient-initiated study participa-
tion is unlikely to arise solely from the clinical research
arena. Instead, datawill arise fromhealth care encounters in
settings using a variety of information representation stan-
dards. In addition, clinical information represents only a
single dimension among the multiple diverse types of data
that must be captured, managed, and interconnected. Sim-
ilar considerations exist for biospecimens, imaging data,
and the molecular data that will be used to characterize the
individual participants. This information must have com-
mon representation across the diverse organizations in
multiple disparate locations acquiring and sharing variant
dialects of data often captured in unstructured (narrative)
form. The NCI’s caBIG program has created such represen-
tations and a collection of tools, accessible as Web tools,
which utilize them. However, as is the case for clinical
information, the caBIG Integration Hub permits disparate
types of information to be cross-mapped to a common
representation. Researcher-generated data can then be col-
lected in a standardized manner and captured in an infra-
structure that can support reuse by other investigators as
authorized by patients.

Aggregation and analysis of the complex, multidimen-
sional data also requires novel infrastructure. The caBIG
community has createddatamart/datawarehouse tools that
facilitate the collection and effective use of themultidimen-
sional clinical and molecular data through its caIntegrator
cagpabilities. These tools effectively manage the large vol-
ume and complexity of data for projects such as The Cancer
Genome Atlas.

Next Steps

Patient-initiated study participation is a potentially
promising way of rapidly generating evidence to support
better targeting of previously approved cancer therapies.
Cancer patients, caregivers, and their advocates have
demonstrated strong enthusiasm for improving the effi-
ciency of clinical research. It is possible that better patient
education will enhance the quality of data collected
through patient-initiated participation in clinical studies.
However, some limitations should be acknowledged and
addressed, including potential issues in selection of
patients for these types of studies. For example, it is
possible that certain highly motivated patients may be
disproportionately represented, which could influence
results obtained.
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We have proposed a model that leverages the motiva-
tion and commitment of cancer patients to overcome
some of the challenges in the collection of data and
biospecimens that can be used to identify biomarkers
predictive of nonresponse to previously approved che-
motherapeutic agents. Care should be taken to ensure
that such studies are designed with broad-based input
from all stakeholders so that patients are informed appro-
priately, the correct types of data and biospecimens are
collected, information is compiled and managed effi-
ciently, the resulting database is made available to
researchers with appropriate protections and security
features in place, and that the data are analyzed in a way
that yields evidence of sufficient quality to inform regu-
latory decisions and clinical practice.
In order to determine the true potential of patient-initi-

ated study participation, pilot efforts are an important first
step. These pilot studies will necessarily be informed by the
ongoing data collection efforts of advocacy organizations.
To inform pilot studies, a Guidance from FDA regarding
what datawill be considered actionable for labeling changes
would be helpful. This information could be gathered
unofficially as part of meetings that convene regulatory

authorities, industry representatives, patient groups, and
academia around this issue.
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