
OBJECTIVE

Friends of Cancer Research (Friends) convened a working group to characterize methodolog-
ical processes and to discuss the implementation and opportunities for formal regulatory use 
of external controls. This whitepaper describes several approaches to constructing an external 
control and also considers the use of hybrid designs that supplement or augment the control 
group in the randomized control trials (RCT) with data from an external population. This white-
paper further discusses statistical methodology to help address potential biases and improve the 
usefulness of the data as well as other adjustment methods that rely on patient summary data. 
In addition, we describe several scenarios where the use of external controls may be advanta-
geous and practices that can help guide the implementation within a clinical study. A use case 
was prepared that characterizes the construction of an external control using clinical trial data in 
multiple myeloma to compare the treatment effect with a randomized control versus an exter-
nal control and assesses the potential impact of unmeasured confounders. 

INTRODUCTION

In drug development, RCT are the gold standard for evaluating the safety and efficacy of med-
ical treatments. However, oncology drug development increasingly relies on the use of sin-
gle-arm clinical trials especially in certain settings where there are ethical or feasibility challenges 
with deploying a concurrent control arm. While single-arm trials alone may yield important safe-
ty and efficacy signals and can be relied on for regulatory decision making in certain clinical and 
regulatory contexts, external controls (sometimes referred to as synthetic controls) may provide 
additional context and supplementary evidence. Expanding the use of external controls to other 
difficult-to-study indications may reduce patient burden where research may be slowed or unin-

CHARACTERIZING THE USE 
OF EXTERNAL CONTROLS FOR 
AUGMENTING RANDOMIZED CONTROL 
ARMS AND CONFIRMING BENEFIT 

P A N E L  1 :  C H A R A C T E R I Z I N G  T H E  U S E  O F  E X T E R N A L  C O N T R O L S  F O R  A U G M E N T I N G  R A N D O M I Z E D  C O N T R O L  A R M S  A N D  C O N F I R M I N G  B E N E F I T

A  F r i e n d s  o f  C a n c e r  R e s e a r c h  W h i t e p a p e r



Characterizing the Use of External Controls for Augmenting Randomized Control Arms and Confirming Benefit

 

2

Friends of Cancer Research

ABOUT FRIENDS OF CANCER RESEARCH

Friends of Cancer Research drives collaboration among partners from every healthcare sector to power 
advances in science, policy, and regulation that speed life-saving treatments to patients.

WORKING GROUP

We are grateful for the data, expertise, and/or review each working group member has provided.

Francois Beckers
EMD Serono

Adrian Cassidy
Novartis

Ruthie Davi
Acorn AI, A Medidata Company

Alaknanda Joshi
Novartis

Laura Koontz
Flatiron Health

Michael LeBlanc
University of Washington

Michael Menefee
FDA

Reena Nadpara
Novartis

Erik Pulkstenis
AbbVie

Dirk Reitsma
PPD

Meghna Samant
Flatiron Health

Xiang Yin
Acorn AI, A Medidata Company

William Capra
Genentech

Frank Cihon
Bayer U.S.

Ritesh Jain
EMD Serono

Bindu Kanapuru
FDA

Dominic Labriola
Bristol-Myers Squibb

Nicole Mahoney
Flatiron Health

Pallavi Mishra-Kalyani
FDA

Jim Omel
Cancer Research Advocate

Jeremy Rassen
Aetion

Gary Rosner
Johns Hopkins University

Chenguang Wang
Johns Hopkins University



3

terpretable due to the use of a concurrent randomized control. The latter may be the case with 
some confirmatory trials of medical products made available through the accelerated approval 
pathway where the control arm may be compromised by early discontinuation or treatment cross-
over to the investigational therapy made available by an accelerated approval.1

Study designs that deviate from the traditional RCT, such as single arm or externally controlled 
trials, are considered in guidance for regulatory approval when their use is justified.2,3 These types 
of trial designs can be warranted for scenarios where randomization may be difficult or infeasible 
due to the rarity of the disease, scarcity of patients, scientific concerns about treatment switching/
crossover, or ethical considerations. For example, challenges introduced by treatment crossover 
can be observed in the double-blind, randomized study comparing sunitinib to placebo. An inter-
im analysis demonstrated a large effect on progression free survival (PFS) and patients on the 
placebo arm were offered sunitinib. During the final analysis, the treatment effect size for overall 
survival (OS) was diminished, which was likely due to treatment crossover.4 

As described in regulation, external controls have generally been allowed only in, “special circum-
stances;” for example, “diseases with high and predictable mortality” and when, “effect of the 
drug is self-evident.” This restricted use is due, in part, to the perceived inability for external con-
trols to be “well assessed with respect to pertinent variables as can concurrent control popula-
tions,” as stated in FDA guidance and regulation.2 However, our ability to electronically store and 
manage continually aggregating real-world data (RWD) from electronic medical records, claims 
data, prior clinical trials data, and other sources is opening opportunities that were not possible 
before. Moreover, higher quality external controls are more available today than in the past due 
to the availability of patient level data and statistical methods for achieving balance in baseline 
characteristics between the clinical trial and external controls. 

There are several examples of the use of external controls for regulatory applications evaluating 
effectiveness, but most have been used for informal, rather than direct, statistical comparison. 
The use of external controls is most common in orphan disease settings where it can be difficult 
to accrue patients, especially for a randomized clinical trial. There are some notable examples of 
the use of external controls in oncology drug development:

1. Blinatumomab (Blincyto)5,6: Historical clinical trial site patient data and propensity score meth-
ods were used to construct complete remission and OS reference rates for comparison to the 
single-arm study of blinatumomab for Ph-negative B-precursor cell relapsed/refractory acute 
lymphoblastic leukemia. As per the sponsor, the historical clinical trial data of 1,139 patients 
from the EU and the US was used to support the FDA’s breakthrough therapy designation 
and accelerated approval in December 2014. 

2. Bavencio (Avelumab)7: In 2017, Bavencio received accelerated approval for Merkel Cell 
Carcinoma on the basis of an 88-patient single arm Phase II trial. Real-world evidence (RWE), 
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contributed by external data from a registry, was used as supportive evidence, but the regu-
latory approval was based primarily on data from the Phase II trial.

Additional efforts and case studies have helped inform methodology for constructing external 
controls and describe limitations and opportunities with these types of analyses. For instance, 
a case study in non-small cell lung cancer demonstrated that it is possible to produce a 
“matched” cohort to a randomized control arm.1 More experience and understanding of the 
circumstances where external data may serve as an external control are needed to characterize 
the full utility and potential of external controls. This paper explores the design and analyses 
of studies leveraging an external control built from external historical or contemporaneous 
patient-level data selected to be similar in important prognostic (or clinical) characteristics to 
patients treated with the experimental regimen.

METHODOLOGICAL APPROACHES AND CONSIDERATIONS FOR CONSTRUCTING 
AN EXTERNAL CONTROL

Multiple sources of data exist to populate an external control cohort. These data sources include 
clinical trial data, published clinical data, and real-world data derived from electronic health 
records (EHRs) and other sources. As external data sources are considered, the advantages and 
limitations associated with the various sources and whether patient-level data is available will 
need to be evaluated when designing a clinical study. Methods discussed in this whitepaper 
focus on the use of individual patient-level data rather than aggregate-level data.

COHORT SELECTION AND ADJUSTMENT METHODS

Careful cohort selection is critical to developing a robust external control to control for potential 
biases that can be encountered in clinical research (Table 1). Lack of randomization can result in 
several potential biases. In particular, selection bias and confounding bias need to be considered 
when selecting patients in the external control cohort. Selection bias occurs when the observed 
patients are not representative of the broader population of interest and thereby can challenge 
the external validity of the results. 

Some examples include selecting patients from a specific geographic region or with certain clinical 
characteristics such as age, comorbidities, prognostic indices or prior/concurrent therapies that are 
not representative of the clinical trial population. It is also important to select a cohort in which 
we can account for confounding that may arise due to lack of randomization. Confounding 
bias occurs when there is an imbalance in the distribution of key baseline characteristics that are 
associated with both the outcome and exposure to treatment. Such characteristics are called con-
founders and are typically characterized as “measured” and “unmeasured.” The presence of con-
founders is particularly important to consider when using controls from RWD sources, like elec-
tronic medical record data, since certain patient characteristics that are likely to impact outcomes
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Bias Explanation Methods to Reduce Bias
Confounding Bias Selection of experimental and con-

trol patients completed in such a 
way that the patient characteristics 
are systematically different across 
treatment groups, perhaps with 
those with better prognoses prefer-
entially receiving one therapy over 
another.

Randomization

Selection Bias Occurs when the observed patients 
are not representative of the broad-
er population of interest and there-
by can challenge the external validi-
ty of the results.

Randomization; Improved 
sampling

Performance Bias Follow-up differs by treatment.
Differential care according to treat-
ment beyond the treatment itself.
Systematic differences between 
groups in the care that is provided, 
or in exposure to factors other than 
the interventions of interest.

Standardization of treat-
ment and follow-up plans 
for all patients

Detection Bias Outcome assessment differs by 
treatment leading to systematic dif-
ferences in outcome determination.

Masking

Attrition Bias Systematic differences between 
groups in withdrawals from a study 
or treatment exist.

Analysis by intention to 
treat

Time-trend Bias Prognostic characteristics of avail-
able patients change during the 
course of the trial especially for trials 
with long recruitment periods.

Maintain randomization

Table 1: Select biases encountered in clinical research
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(e.g., age, access to clinical care, socioeconomic status) are also likely to influence treatment 
exposure. For example, we may see a distribution of patients in the clinical trial skewed more 
toward younger and fitter patients, while the population of real-world patients may comprise 
a much broader patient population including the elderly and patients with more comorbidities. 
Even within the real-world population, confounding by indication may occur as certain types of 
patients may be more likely to be prescribed certain treatments because of their characteristics. 
Finally, differences in the characteristics of sites participating in clinical trials (e.g., site effect, site 
volume, clinical care protocols, access to multimodality care, academic vs. community centers, 
etc.) can also confound outcomes and bias results. The myriad of considerations discussed above 
make it challenging to isolate the treatment effect in externally controlled studies, and analytical 
approaches need to be considered to mitigate such biases, where possible.

A fundamental step when considering external controls is thoughtful and rigorous planning in 
the design phase. This involves careful identification of key baseline prognostics and confounding 
factors through tools such as directed acyclic graphs (DAGs), and accordingly pre-specifying the 
key inclusion/exclusion criteria for external cohort selection.8,9 The identification and prioritiza-
tion of key criteria for selection is critical because not all criteria typically applied in clinical trials 
may be available or possible to collect using completed historical trials or retrospective real-world 
datasets. It is thus important to align, as much as possible, the criteria between the clinical trial 
and the external control. Once a prioritized list of criteria is identified, all efforts must be made 
to collect the relevant data to a high degree of completeness and accuracy, noting that in some 
cases prospective approaches may be needed to intentionally collect the required data element. 
Sponsors should clearly and transparently document these efforts (e.g., through patient attrition 
diagrams, data deficiencies), hypothesize the impact of missing data elements on overall out-
comes, and have plans to address this impact. 

Despite careful selection of the external cohort in alignment with the trial eligibility criteria, 
imbalances in key confounding factors may still exist that need to be further mitigated through 
thoughtful consideration and pre-specification of appropriate statistical methodologies. There is 
no one adjustment method universally preferred over others; Table 2 below outlines methods 
that are commonly used to drive greater balance in patient distributions among measured covari-
ates. This is not intended to be a comprehensive list and variations of these methods are com-
mon. The choice of the statistical method in a particular context ultimately depends on a variety 
of factors including available external cohort size, number of key variables to consider, tolerance 
for complexity, etc. Propensity score methods are especially important in the creation of external 
controls and are further discussed in the next section.10,11 A propensity score (PS) is the probabil-
ity of being treated with one drug versus another, based on the measured factors known about 
the patient. In a single number, the PS captures much of the nuance about treatment choice and 
allows us to control for a substantial amount of confounding using a single variable (a detailed 
description of propensity scores, propensity score matching, and propensity score weighting is in 
Appendix 1).
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For hybrid designs (randomized controls augmented with external controls), some statistical meth-
ods determine the degree to which external information enters the analysis of a clinical trial in a 
data-dependent way. If the external data, particularly outcomes or covariate-adjusted outcomes, 
seem consistent with the outcomes of the current trial’s control group, the algorithms will give 
relatively more weight to the external data than when there appear to be heterogeneities. Some 
example methods are commensurate priors, power priors, and meta-analytic predictive priors and 
are commonly used in trial designs with hybrid controls.12–16 

Table 2. Commonly used statistical methods to balance baseline factors8

Method Description Key Benefits Key Limitations
Exact match-
ing

Trial patients are 
matched 1:1 or 1:many 
to external controls 
on a set of important 
baseline characteristics

- Simple and intuitive - Need large external cohort 
sample size to find matched 
controls for all patients and 
some trial patients may remain 
unmatched

- Often very limited number of 
baseline factors can be used for 
matching

- Inefficient use of data from 
unmatched trial and control 
patients

Table 2 continues on Page 8
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Propensity 
score match-
ing17

Trial patients are 
matched with fixed or 
various ratios to exter-
nal controls on pro-
pensity scores (proba-
bility a patient is in the 
trial cohort vs external 
control conditional 
on baseline covari-
ates). Since scores are 
continuous, calipers/
intervals are commonly 
used

- Can be simple and 
intuitive

- Large number of 
baseline factors can be 
captured and balanced 
through propensity 
score

- Matching is based
on one single score 
rather than on the 
full multivariate set of 
baseline factors

- Calipers provide flex-
ibility to relax match-
ing requirements and 
enable more efficient 
use of external con-
trols

- Some matching algorithms 
need a large external cohort 
sample size to find matched 
controls for all patients and 
some trial patients may remain 
unmatched

- Inefficient use of data from 
unmatched trials and control 
patients when insufficient num-
ber of matches are found

- Requires correct specification 
of the propensity score model

- Pre-specifying width of the 
caliper may be challenging 
depending on the context and 
sample size

Propensity 
score weight-
ing – Inverse 
probability 
of treatment 
weights 
(IPTW)18

Propensity scores 
are typically used to 
weight patients in 
the trial and external 
cohorts in a way that 
achieves balance in the 
baseline characteristics 

- Efficient use of all 
trial and external con-
trol patients

- Distorts the original distribu-
tion of the trial patients since 
they are also weighted along 
with the external controls, 
thereby changing the target 
population for which treatment 
efficacy is being assessed

- Requires correct specification 
of the propensity score model

- May require more complex 
analytic decisions, e.g. trim-
ming, in case of extreme pro-
pensity scores

Propensity 
score 
weighting –
Weighting by 
odds19 

Patients in the trial arm 
are given a weight of 
1 (i.e. all information is 
included) while odds 
of propensity scores 
are used to weight 
patients in the external 
cohorts

- Distribution of trial 
patients remains intact 
and full information 
from all trial patients is 
utilized

- Efficient use of all 
trial and external con-
trol patients

- Requires correct specification 
of the propensity score model
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NOTES ON EFFECT ESTIMATES

Matching and weighting are on their surface very similar, but there is a subtle difference in the values one 
estimates from each approach. The matching approach will estimate the average treatment effect in the 
treated, which can be more tangibly thought of as the treatment effect among those patients who were 
reasonable candidates for either treatment choice: this is a notion of clinical equipoise. On the other hand, 
IPTW weighting estimates the average treatment effect in the entire population and considers what would 
happen if all patients were moved from control to treatment.21

For the questions considered here, we would expect there to be little difference between the average treat-
ment effect in the treated and the average treatment effect in the entire population, as all patients would 
have met stringent inclusion/exclusion criteria, and thus would in all likelihood be eligible for either treat-
ment pathway. As such, considerations of the feasibility of matching should outweigh considerations of the 
estimated treatment effect. 

CONTROL OF CONFOUNDING BIAS

Confounding bias results from not accounting for factors that are associated with both the treatment 
choice and the outcome, independent of any effect via treatment.22 In studies of medications, some of the 
strongest confounding comes from confounding by indication, in which patients’ level of illness drives treat-
ment choice (sicker patients may get “stronger” treatments) as well as outcome (sicker patients may experi-
ence worse outcomes).23 This can be particularly difficult to address, though design approaches such as fit-
for-purpose data, RCT-like study design,24 new user cohorts,25 and principled process,26 as well as analytic 
approaches, such as multivariable regression, propensity scores, and high-dimensional propensity scores,27 

Outcome 
regression 
models

Association between 
treatment and out-
come is modeled 
adjusting for baseline 
covariates 

Doubly robust regres-
sion models are 
sometimes considered 
whereby a function of 
propensity scores is 
used as weights in the 
model, making it more 
robust to model mis-
specification20

- Generally easy to 
understand as famil-
iarity with regression 
models is high among 
research community

- Efficient use of all 
trial and external con-
trol patients

- Doubly robust mod-
els provide insurance 
against model mis-
specification (i.e the 
results are unbiased 
so long as either the 
outcome model or 
propensity model are 
correctly specified)

- The outcome model must be 
correctly specified if no propen-
sity score weighting is used

- Either the outcome or pro-
pensity score model must be 
correctly specified if a weighted 
model is used

- No separation of design for 
balancing baseline factors from 
the outcome analysis
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can eliminate the effect of measured (or measureable) confounding. 

However, unmeasured confounding may yet remain, and control of a factor that is ultimately 
unmeasurable is a substantial challenge. Approaches that can control for this unmeasurable 
confounding, such as instrumental variable analysis, are not frequently seen in the medical lit-
erature but can be effective.28 Separately, high dimensional propensity scores can “uncover” 
previously-unmeasured confounders and reduce bias. There are powerful techniques that allow 
us to assess unmeasured confounding. 

Causal diagrams can help elucidate potential sources of bias.8 More quantitatively, sensitivity 
analyses allow us to ask ourselves questions like, “If we had an unmeasured confounder (or 
group of confounders) of strength x, how much would our results be affected?” and “How 
powerful would an unmeasured confounder (or group of confounders) have to be to mean-
ingfully alter our interpretation of the situation we’ve observed?”29 E-values and tipping point 
analyses may be potential solutions for assessing the impact of unmeasured confounders on 
the overall treatment effect. The use case included in Appendix 2 illustrates a tipping point 
analysis, which shows the strength a confounder would need in order to change the statistical 
significance or numerical direction of the original estimates of the treatment effect. By address-
ing these questions, we can better reason about the robustness of our results to issues like 
unmeasured confounding; presenting such results can strengthen readers’ and reviewers’ confi-
dence in the evidence.  

While the potential for unmeasured confounding is a key issue in any non-randomized study, 
in the single-arm study with external controls scenario, a more important issue is whether 
the experience of the controls truly represents the counterfactual experience of the treated 
patients. That is, would standard of care patients have been treated with the single-arm treat-
ment had the single-arm treatment been available to them, and vice-versa? To ensure this, we 
implement strong inclusion/exclusion criteria, draw controls from populations similar to that of 
treated patients, and apply other key design approaches. 

OUTCOMES AND ENDPOINT CONSIDERATIONS

Even when a set of patients comparable to the experimentally treated patients can be identified 
for the external control, to create valid inference regarding the treatment effect, one must also 
ensure comparable ascertainment and measurement of the outcomes of interest for the exter-
nal control and experimentally treated patients. Differences between arms in endpoint collec-
tion methods and endpoint definitions can bias the treatment effect estimates. But the way the 
endpoints are captured for the external control patients generally is not within the research-
er’s control and may not be completely consistent with the experimentally treated patients. 
Additionally, assessment of response or progression free survival endpoints may be performed 
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locally or centrally, and those assessment differences should be a consideration when external control data 
are utilized. In addition, some response criteria, especially in hematologic malignancies, are complex, which 
may result in differences in implementation from study to study. 

These inconsistencies may be more or less challenging based on the source of data. For example, external 
controls built from historical clinical trial data enjoy the benefit of similar collection and definition of effica-
cy and safety endpoints while endpoints representing similar clinical concepts may be captured differently 
in external controls built from real-world data. Endpoints that are objective may be less affected by differ-
ent measurement techniques, timing, or settings and may be preferred when using an external control. 
For instance, progression free survival may have more complex considerations than an endpoint related to 
tumor shrinkage when considering options for external controls.30,31

OPERATIONAL CONSIDERATIONS

Situations that may support the use of an external control include those where randomization may not be 
feasible due to ethical, scientific, or operational considerations (Table 3).32 For example, for certain orphan 
diseases, rare diseases, or rare biomarker-defined cohorts, it may not be possible to enroll a sufficient 
number of patients to have a concurrent control, meriting consideration of external data sources. Hybrid 
designs could also be considered to reduce the number of patients assigned to the control by augmenting 
with external data. In some cases, it may be unethical to randomize patients to the control arm. All patients 
could receive a promising experimental drug in an externally controlled trial, making this type of study more 
attractive to patients, and lessening the risk of trials closing due to poor accrual. Externally controlled stud-
ies may also be valuable when treatment crossover from a deployed control arm to the experimental arm 
of an RCT, or to off-study treatments including new treatments approved during the course of the study, 
compromises the interpretability of treatment effects. In some respects, externally controlled data may be 
preferable to single-arm studies that are often employed to address the limitations noted in the situations 
above and given that some time to event endpoints may be difficult to interpret in a single-arm study.
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Scenario Challenge Role of External Controls
Uncontrolled studies 
(e.g., single-arm trial, 
expanded access)

Outcomes of the experimental-
ly treated patients are difficult to 
interpret without an understanding 
of expected outcomes for patients 
who did not receive the experimen-
tal treatment

-To provide context needed to interpret out-
comes of experimentally treated patients by 
comparing to a group of patients who did 
not receive experimental treatment

Studies of orphan 
diseases, rare diseas-
es or rare biomark-
er-defined cohorts

Recruitment of patients is very diffi-
cult due to rarity of defined disease 
so that a concurrent control may 
not be possible and resulting single 
arm data is difficult to interpret

-To improve patient recruitment and allow a 
design where all patients can be treated with 
the experimental product

-To provide context needed to interpret out-
comes of experimentally treated patients by 
comparing to a group of patients who did 
not receive experimental treatment

-To function as a natural history cohort to 
describe patient characteristics and out-
comes in these settings

Post-marketing con-
firmatory study fol-
lowing accelerated 
approval

Recruitment and/or retention to a 
randomized controlled trial when 
the experimental product is avail-
able on the market is very difficult 
and sometimes impossible

-To augment or replace the randomized 
control of the confirmatory trial so that an 
external control may be constructed and 
confirmatory studies could be completed. 
An additional benefit would be that patients 
enrolling in the trial have a higher probabili-
ty or even assurance of receiving the experi-
mental therapy

High rate of treat-
ment cross-over

Patients assigned to the control 
arm of a randomized controlled 
trial may use the experimental 
product or a similar product in the 
same class when the experimental 
product or a similar product in the 
same class is available on the mar-
ket thereby diluting the ability of 
the study to demonstrate a differ-
ence between arms

-To augment or replace a randomized con-
trol with patients who did not receive the 
experimental product (since perhaps they 
were studied at a time when the experimen-
tal product was not available) so that the 
difference between arms is a more accurate 
estimate of the actual treatment effect

Table 3. Select scenarios that may benefit from the use of an external control
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To date, from a regulatory perspective, external controls have been used to provide a bench-
mark or context for interpreting single arm effectiveness studies. With careful planning and 
scientifically rigorous approaches, external controls may be compared through formal statisti-
cal methods and support regulatory decisions. The clinical questions and regulatory decisions 
sought should drive the selection of data source, study design, and analytic approaches. 

Bias inherent in externally controlled studies may be difficult to account for, but certain 
approaches may increase the credibility of such studies and reduce concerns (see above). Once 
a decision has been made to use an external comparator, there are specific considerations 
that may strengthen or limit the credibility of resulting data. These considerations, described in 
current FDA guidance, include ensuring similarity between the external populations and those 
receiving the experimental drug with respect to critical baseline characteristics such as disease 
severity, duration of illness, prior treatments, and other critical prognostic factors. 

Another important consideration is the comparability of endpoint assessments regarding both 
definitions and ascertainment (timing, measurement). Historical clinical trial data may have 
more applicable data than data derived from EHRs or registries, which may not collect the 
sorts of endpoints used in clinical trials or collect them at consistent time points. For example, 
an endpoint like overall survival is less likely to suffer from ascertainment bias than is expected 
from more complex endpoints like response rate or progression free survival, which may differ 
in definition and ascertainment as well as analytical approaches across different datasets or 
physician assessments. 

Patient management also matters, especially for cancer types in which the standard of care 
is not agreed upon or has rapidly changed over time. For example, as toxicity management 
improves over time, this may in turn impact patient outcomes. It would be beneficial if man-
agement of patients from historical data sources was similar enough to the current clinical 
trial to limit any resulting bias. This may be assessed by looking at the constancy of treatment 
outcomes historically for the control regimen. Consistency would lead to a higher level of con-
fidence that if a randomized control had been deployed in the current trial, then it would have 
behaved similarly. To the extent that patient management in clinical trials differs from patient 
management in clinical practice, this also may result in differences between using historical clin-
ical trial data vs. RWD. It should also be noted that the patient population(s) are rapidly chang-
ing in many areas. The immunotherapy revolution has dramatically changed many patient pop-
ulations available for clinical trials relative to data that may be available historically. A complete 
and transparent assessment of these issues will help researchers and reviewers understand the 
scientific strength of the evidence of safety and effectiveness resulting from the study. 
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REGULATORY CONSIDERATIONS

FDA regulations explicitly recognize the use of external controls, including a hybrid approach 
where a clinical trial control group is augmented with external data, to support regulatory 
decision-making in limited circumstances.2,3 While the use of external control data matures 
to the point where it may support regulatory approval more broadly, careful consideration 
should be given to near-term uses in appropriate regulatory and clinical contexts. Rather than 
replacing RCTs in situations where randomization is feasible, new methodological approaches 
and data sources may allow the use of external comparators, in situations where randomiza-
tion would be unethical or infeasible. For example, external patient level data may be used to 
augment randomized control arms as part of a hybrid approach that could reduce the number 
of patients that are randomized to the control arm within a study. Such data may come from 
completed RCTs or from real-world sources such as electronic medical records. 
 
Given a solid rationale for an external control, and a careful assessment of whether an exter-
nal control would be scientifically feasible based on the considerations just outlined, the actual 
implementation of the external control requires care and planning. Several procedural best 
practices are advised as part of the regulatory process to increase the credibility of externally 
controlled studies. Pre-specification of protocols and statistical analysis plans provide confidence 
that the external control group selection process follows a prospective methodology and plan 
that could be independently performed or duplicated. This should include a detailed protocol 
with clear objectives and description of the study population, as well as details regarding data 
sources and critical features of the study design and analysis plan. The approach should be 
specified in the statistical analysis plan or other companion document and should not be biased 
by actual analysis of candidate external control group data that may be perceived to introduce 
selection bias. This may happen for example if historical data/trials with superior results are 
preferentially omitted. As a result, it is important that the entire selection process of a dataset 
and patient-level data be prespecified independent of outcome data.33,34 The final statistical 
analysis and any sensitivity analyses should also be clearly pre-specified consistent with good 
statistical practice. 

Early discussions with regulators and review of key planning documents is likely to result in 
valuable feedback for sponsors using external controls. Sponsors should consider soliciting FDA 
feedback by means of protocol submissions or formal product meetings. Sponsors may also 
explore opportunities for participation in the Agency’s Complex Innovative Trial Designs pilot 
program, which exists to further the use of new trial designs.35 When external data comes from 
real-world data sources, sponsors may request input on study designs from the FDA’s RWE 
Subcommittee and should note any submission of RWD to the agency for tracking purposes. 
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CONCLUSIONS AND RECOMMENDATIONS

In oncology, there are clinical settings and scenarios where randomization may be difficult 
or not feasible (e.g., rare disease, small patient population, loss of equipoise, availability of 
the investigational agent outside of the clinical trial). Additionally, patients with serious, life 
threatening diseases may often seek trials where the likelihood of receiving the investigational 
agent is high (e.g., single arm studies, designs that allow treatment crossover). However, these 
scenarios (described in Table 3) may make interpreting the clinical trial results difficult or could 
introduce uncertainty in the results. The use of external controls in clinical studies represents 
an opportunity to potentially reduce the number of patients in the control arm, enhance data 
obtained from clinical trials, and improve the interpretability of results.

This whitepaper describes methodological approaches for constructing an external control 
cohort and reducing or managing potential biases that can be introduced in these types of 
analyses as well as operational and regulatory considerations to help guide their successful 
use. The case study developed for this whitepaper (Appendix 2) also helps demonstrate how 
to operationalize several of the concepts described in this whitepaper and inform the design of 
future clinical studies.

Additional considerations may also need to be explored to further facilitate the use of external 
control cohorts more formally in oncology drug development and regulatory discussions:

• Identify methods and mechanisms to share patient-level data to facilitate robust analyses
• Clarify how sponsors and investigators can incorporate external controls for formal analyses 

to support regulatory decisions 
• Establish best practices for the use of specific data sources and appropriate methodologies 

to help develop and promote standards
• Characterize appropriate uses of specific endpoints in external controls and the ability to 

compare across studies 



Characterizing the Use of External Controls for Augmenting Randomized Control Arms and Confirming Benefit

 

16

Friends of Cancer Research

Glossary

Control Arm – In a clinical trial, the group of participants that is not given the experimental intervention 
being studied is the control arm. A control arm is used to establish the expected outcome without the 
effect of the new experimental therapy, and the result in the experimentally treated patients is judged rela-
tive to this. The control arm may receive an intervention that is considered effective (the standard), a place-
bo, or no intervention. 
 
Randomized Control Arm – In a randomized controlled clinical trial, the group of participants who are 
randomly selected to not receive the experimental intervention is a randomized control arm. Random selec-
tion of patients and concurrent study of the randomized control arm with the study of the experimental 
intervention group provides high levels of assurance that differences between the randomized control arm 
and the experimental intervention arm are attributable to the intervention, not imbalances in baseline char-
acteristics or differences in time, place, or circumstances of treatment.

External Control Arm – An umbrella term referring to any control that is not a randomized control. Can 
be used as a reference for interpretation of a set of experimental data especially when randomization is 
unethical or unfeasible.

Concurrent Control Arm – A type of external control. A group chosen from the same or similar popula-
tion as the experimental intervention group and treated over the same period of time as the experimentally 
treated patients. Ideally, the experimental intervention and control groups should be similar with regard to 
all baseline and on-treatment variables that could influence the outcome, except for the study treatment. 
May be patient-level data or summary information gained from medical literature or other sources.
 
Historical Control – A type of external control. A non-concurrent comparator group of patients who 
received treatment (placebo or active treatments) in the past or for whom data are available through 
records. May be patient-level data or summary information gained from medical literature or other sources.
 
Synthetic Control Arm – A type of external control consisting of patient level data from patients external 
to the trial and selected with statistical methods such as propensity scores to provide confidence that the 
baseline characteristics of the selected external patients are balanced and comparable with the baseline 
characteristics of the experimentally treated patients. Can be formed from external clinical trials data, real-
world data, or other data sources.
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Appendix 1: Detailed Description of Propensity Scores, Propensity Score Matching, and 
Propensity Score Weighting

Propensity Scores

The propensity score is a method developed in the early 1980’s, and further developed sub-
stantially over the past decades, to reduce bias due to confounding in observational (non-ran-
domized) studies.21,36,37 A more novel application of propensity scores is to create balance 
between a clinical trial treatment arm and an external control group (see Table 2).6 While it 
does not control for unmeasured confounding, there are several advantages: 
• A propensity score makes it possible to create balance across many factors simultaneously, 

avoiding issues of cutting data “too thin” when exact matching on many factors.
• In scenarios where patient n is limited but confounding is strong, the single propensity 

score value allows us to capture a large amount of confounding using substantially fewer 
degrees of freedom in an outcome model.38

• The propensity score can be effectively used in a variety of ways, including matching, 
weighting, or regression.

Propensity Score Matching

 The most common use of the propensity score is in matching. The idea is straightforward: if 
we are able to estimate the probability of a patient being treated with the investigational treat-
ment, as compared to the standard of care (SOC) measured in external controls, then if we 
match patients who had similar probabilities of being treated with the investigational treatment 
and treated with the SOC, then the choice between investigational treatment and SOC for that 
patient can be thought of as essentially random. That is, if we can (1) estimate a propensity 
score using all relevant confounders, and then (2) take each patient treated with the investiga-
tional treatment and find a similar patient treated with the SOC, we will (3) create a cohort of 
patients in which each confounder tends to be balanced between the investigational and SOC 
treatment groups, with no need to further adjust for confounding. As a result, the data can be 
analyzed like that of an RCT, even though we created the balance by construction rather than 
design. 

The advantages of matching are substantial, and include:
• Clear methodology that is easily understood by readers, reviewers, and others.
• A table of baseline characteristics that can be verified for balance, building confidence in 

results.
• Simple analytics that do not require, for example, bootstrapped variances or other statistical 

nuances.

However, matching can also introduce a challenge: if we seek to match all patients treated 
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with the investigational treatment but fail to find a match among those treated with the SOC, then we 
will lose one or more patients that received the investigational treatment in the analysis. In cases where 
there is a substantial n, this is often manageable, but in small trials where each patient’s clinical experi-
ence is of extraordinary value, losing patients is highly unfavorable. 

Propensity Score Weighting

An alternative to matching in which no data are lost is propensity score weighting. Weighting is a pro-
pensity score-based approach to standardization; while there are a wide variety of weighting techniques 
that can be used, the one most commonly seen (and the one used in the Blincyto example) is inverse 
probability of treatment (IPTW) weighting. Another technique, weighting by propensity odds, is discussed 
in Table 2.

As a propensity score estimates a patient’s probability of receiving a given treatment, the inverse prob-
ability of treatment weight is the inverse of the propensity score (that is, 1/PS) for patients receiving the 
investigational treatment and 1/(1-PS) for SOC patients. (We use 1-PS because that is the probability of 
being treated with the SOC.) When using IPTW weights, we model a population in which both treated 
patients and control patients are “standardized” to resemble the entire study population, such that treat-
ed patients may be standardized to more resemble controls and vice-versa.

The clear advantage of this technique is that no patient data are lost; we are able to use all data and 
achieve confounding control. However, there are several disadvantages:
• The method appears somewhat opaque and may not create confidence by readers, reviewers, and 

other stakeholders.
• Because this method counts certain patients more than others (those with high weights versus those 

with low weights), it is possible that it may overweight the experience of one or more patients.39 
Control of the maximum assigned weight is often necessary.40

• This method will change the weight of both patients receiving the investigational agent and SOC 
patients, and as such, the data as weighted will not represent patients’ actual experience in the sin-
gle-arm trial.

• Technical adjustments are often needed to stabilize weights and to accurately report variance.41 
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Appendix 2: Developing a Synthetic Control Arm Derived from Historical Multiple Myeloma 
Clinical Trials and Assessing Unobserved Confounders

1. CASE STUDY OBJECTIVES
 
This case study builds on previous work (Friends of Cancer Research whitepaper, 2018, case study in non-
small cell lung cancer) and continues exploration of whether a synthetic control arm (SCA) can be useful 
for assessment of medical product efficacy and safety in indications where a randomized control presents 
ethical or practical challenges. This case study has two primary objectives. 

• Objective 1: To explore whether the treatment effect based on a SCA (i.e., investigational arm vs. SCA) 
can mimic the treatment effect based on the randomized control (i.e., investigational arm vs. random-
ized control).

• Objective 2: To develop and illustrate statistical methods (e.g., tipping point analyses) useful for assess-
ing the impact of unobserved confounders on the demonstration of efficacy in the setting of a SCA.

This case study will also address some of the concerns regarding incomplete matching in the previous work 
by utilizing matching methods that do not require exclusion of a large proportion of investigational product 
(IP) treated patients and by extending SCA exploration to additional indications.

2.  DATA SOURCES 

This case study is based on patient-level data from multiple historical clinical trials in relapsed/refractory 
multiple myeloma. These trials have been conducted by the pharmaceutical industry for the purposes of 
drug development and are available through the Medidata Enterprise Data Store (MEDS). MEDS is a collec-
tion of thousands of previous clinical trials with patient-level data recorded through the Medidata electronic 
data capture system, Rave. Per the legal agreements with the sponsors of these historical clinical trials and 
Medidata, these data are available for use in deidentified (e.g., patients and original sponsor of the trial 
cannot be identified) and aggregated (e.g., every analysis must include data from two or more sponsors) 
form. 

These studies were selected, and eligibility criteria were defined, based on clinical importance, balancing 
the need to identify a fairly homogenous set of historical clinical trial participants representative of a typical 
single indication in drug development, and the desire to identify the largest volume of applicable historical 
data as possible. 

As shown in Table 1, the historical data originated from open label phase 3 multinational trials that were 
conducted between 2010 and 2017. At baseline, all patients had: 

• Relapsed or refractory multiple myeloma
• Received at least 2 prior lines of treatment
• Received prior treatment with lenalidomide and bortezomib
• Age ≥ 18 years

Including both investigational and control arms from the historical trials, there were 946 historical patients 
available for this case study.
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Because the historical data in this case study came from trials that had been conducted as part of clinical 
development programs, the populations, study design, data collection methods, and endpoints utilized in 
these trials are fairly consistent across trials. Nevertheless, differences across studies in some variable defini-
tions were present but have been reconciled as part of the data standardization process. Clinically import-
ant baseline covariates available across studies and to be used in the creation of the SCA are shown in 
Table 2. Overall survival is the endpoint of interest for this case study and was measured as a key outcome 
in all historical trials that had similar study designs, such as the disease population and follow-up time.

Table 1: Features of Historical Data
Design Region Start/End 

of Trial(s)
Baseline 
Characteristics

Endpoints Number 
of 
Patients 
in All 
Arms

Control 
Regimen

Historical 
Data 
(from 
multiple 
trials)

Open 
label, 
phase 3

Multi-
national

Trial con-
ducted 
between 
2010 and 
2017

- Relapsed or 
refractory mul-
tiple myeloma
- Received at 
least 2 prior 
lines of treat-
ment
- Received prior 
treatment with 
lenalidomide 
and bortezomib
- Age ≥ 18 
years

Overall sur-
vival 

946 Dexamethasone

Table 2: Clinically Important Baseline Covariates Available Across Historical Trials
1. Race (White vs. Others/unknown)

2. Region (Europe vs. Others/unknown)

3. ECOG=0 vs 1 vs 2 or 3

4. Number of drug classes refractory (≥4 vs. <4)

5. Cytogenetic risk (High vs. Standard/unknown)

6. Prior stem cell transplant (Yes vs. No/unknown)

7. Age (continuous)

8. Days since last PD/relapse to first study dose (continuous)

9. Sex (F vs. M)

10. Bone lesion (Yes vs. No/unknown)

11. Best response to last therapy (≥PR vs. <PR/unknown)

12. Number of prior lines of therapy (continuous)

13. Years since diagnosis (continuous)

14. Weight (continuous)
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3. RATIONALE AND METHODS

3.1 For objective 1, we explored whether the treatment effect based on a SCA can mimic the treatment 
effect based on a randomized control using a historical randomized controlled trial in multiple myeloma. 
This trial, the ‘Target Randomized Trial’, had a 2:1 treatment assignment ratio and included 294 patients 
assigned to investigational treatment and 149 patients assigned to dexamethasone as a control. An SCA 
was selected from the remaining 201 patients assigned to dexamethasone control in all other studies 
available within this project. Patients assigned to investigational therapies in all trials except the target trial 
made up the remainder of the total 946 patients referenced above (table 1) and were not utilized in this 
case study. Historical patients were selected for inclusion in the SCA to balance the baseline characteristics 
of the IP treated patients in the Target Randomized Trial and the SCA using propensity score methods. 
Selection of the historical patients for the SCA was completed using only baseline characteristics without 
knowledge of any post-randomization data.

While appealing in its simplicity and similarity to a randomized design, the commonly used approach to 
propensity score matching, Greedy 1-1 matching, was not possible for this case study due to the limited 
number of historical control patients available. Rather, we used a matching method called optimal full 
matching (often referred to as full matching), which was introduced by Rosenbaum (Rosenbaum 1991) and 
recommended recently (Hansen 2004, Austin and Stuart 2015a). Full matching subdivides the subjects into 
strata of different sizes, consisting of either one IP treated subject and at least one control subject or one 
control subject and at least one IP treated subject. The algorithm of full matching is to minimize the aver-
age differences within a matched set in the propensity score between IP treated and control subjects. An 
attractive feature of this approach is that it can use most or even the entire set of all IP treated subjects in 
the analysis. This contrasts with conventional matching approaches such as Greedy matching where a por-
tion of treated subjects cannot be matched and therefore are excluded from the final analysis. As a result, 
full matching might avoid potential bias due to incomplete matching, which can occur when some treated 
subjects are excluded from the matched sample. 

Step 1: Estimate propensity scores. The propensity score is the probability of assignment of target trial 
investigational product conditional on the baseline characteristics (i.e., potential confounders) using logistic 
regression

 
where T denotes the investigational product in the target trial (T=1)/historical control (T=0) and X is a vec-
tor representing the covariates to be included in the propensity score model. The predictors included in the 
propensity score model are all available baseline characteristics described in Table 2. These baseline covari-
ates will be utilized without further variable selection or trimming to obtain optimal balance between the 
matched subjects. Using a large set of covariates is recommended, even if some of the covariates are only 
related to self-selection and other covariates, and not necessarily to the outcome of interest (Stuart & Rubin 
2008, Harris 2016). Some researchers recommend using all available baseline covariates in the analysis (Lim 
2018) if the sample size permits. 
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Step 2: Create SCA by selecting historical patients to match investigational patients in the 
Target Randomized Trial using full matching. SAS PROC PSMATCH (SAS/STAT® 15.1) will be 
used for matching, and the maximum number of historical controls to be matched with each IP 
treated patients and the maximum number of IP treated patients to each historical control will 
be determined based on the ratio of the number of subjects between IP treated patients and 
historical controls (Hansen 2004) as well as the performance of balancing baseline characteris-
tics listed in table 2. 

Step 3: Post-matching evaluation of covariate balance. The true propensity score should be a 
balancing score. We will examine whether the distribution of measured baseline covariates is 
similar between the Target Randomized Trial investigational arm and SCA subjects. Baseline 
demographic and disease characteristics will be summarized with descriptive statistics for the 
Target Randomized Trial investigational arm and SCA. Standardized difference in covariate 
means before matching and after matching will be computed and compared. 

 For a continuous covariate, the standardized difference is:

 Where denote the sample mean of the covariate for the Target Randomized Trial 
 investigational arm and historical control groups, respectively; st

2  and sc
2 denote the 

 sample variance of the covariate for the Target Randomized Trial investigational arm and his
 torical control groups, respectively.

 For dichotomous (or categorical) variables, the standardized difference is defined as:

 Where                  denote the prevalence of covariate (or a category of covariate) for the 
 Target Randomized Trial investigational arm and historical control groups, respectively. For 
 covariates with more than 2 categories, the standardized difference for each level of the 
 categorical variable will be calculated. 

To account for the difference in the number of treated and control subjects within each 
matched set in full matching, a weighted standardized difference will be used and weights will 
be derived from the strata imposed by the full matching and constructed as follows: IP treated 
patients are assigned a weight of one, while each historical control patient has a weight calcu-
lated as the number of IP treated patients in its matched set divided by the number of controls 
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in the matched set. (Ho 2007) The weights of controls are scaled such that the sum of the weights from 
matched controls across all the matched sets is equal to the number of uniquely matched treated subjects.

Each sample estimate (sample means, variances, and prevalences) in the above formulas will be 
replaced by its weighted equivalent. The weighted mean  and weighted sample variance 

                                                      will be used, where wi  is the weight assigned to the ith subject 
(Austin and Stuart 2015b).

The absolute standardized differences should generally be less than 0.25 (Stuart et al., 2008). An absolute 
standardized difference of less than 0.10 has been taken to indicate a negligible difference in the mean 
or prevalence of a covariate between treatment groups (Normand et al., 2001). In addition, the matching 
process will be evaluated by examining the distribution of propensity scores as well as individual baseline 
characteristics, including prognostic factors between the Target Randomized Trial investigational arm and 
SCA using graphical methods such as cloud plots.

The treatment effect on overall survival based on the SCA will be described alongside the treatment effect 
from the Target Randomized Trial using a Kaplan Meier curve, log rank test, hazard ratio, and 95% con-
fidence interval for the hazard ratio. Weighted estimates incorporating the weights induced by the full 
matching will be examined.

3.2 Objective 2 is undertaken to illustrate an approach for testing the robustness of the treatment effect 
to an unobserved or unknown covariate, a potential confounder. While methods such as propensity score 
matching can adjust for observed confounding, unobserved confounding or unavailable measurement is 
often a concern compared to the gold standard randomized clinical trial where both observed and unob-
served confounders can be balanced. When a key variable is not available for historical patients used to 
build the SCA, balance between groups in this factor cannot be assured or even described. For example, 
there may be situations where a key biomarker discovered to have prognostic value only in recent years is 
available in today’s investigational patients, but was not measured or is otherwise unavailable in historical 
trials. Imbalance in this known or unknown factor could bias the comparison between groups. Under this 
objective, we illustrate a special type of sensitivity analyses (i.e., tipping point analyses) designed to assess 
how strong the association of an unobserved confounder with the treatment assignment and the outcome 
would have to be to change the study inference. If the effects of the investigational product (efficacy or 
safety) is insensitive over a wide range of plausible assumptions regarding the confounding, then the quali-
tative effects can be concluded to be secure despite the possibility of unobserved confounders.

Utilizing methods proposed by Lin (Lin 1998), we will adjust the observed treatment effect (HR and 95% 
confidence intervals) for overall survival to reflect the impact of a theoretical unobserved confounder. Let β 
and β* denote the true and apparent regression parameters for the treatment effects, respectively. The β is 
the parameter of interest adjusting for the potential unobserved confounder; while β*, obtained from the 
observed analysis and necessarily produced by a reduced model due to the unavailability of the unobserved 
confounder will be adjusted by specifying the distributions of the unobserved confounder among the treat-
ment arms as well as the effects of the unobserved confounder on outcome as 
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where P0 and P1 are the assumed prevalence of the unmeasured confounder among the investigational 
group and SCA respectively, and the assumed hazard ratio of the unmeasured confounder on the event 
of interest among the investigational group and SCA is Γ0 = eγ0 and Γ1 = eγ1, respectively. Without loss of 
generalizability, we can assume Γ = eγ0  = eγ1. The strength of these assumed relationships between the 
potential confounder and treatment arm imbalance (ie, prevalences P0 and P1) and the potential confound-
er and overall survival (ie, hazard ratio Γ) will be varied over a range of relevant values so that the point 
where the conclusion regarding the effect of the drug is changed can be identified.

The assumptions that result in a loss of statistical significance of the treatment effect with the SCA will 
be highlighted as the ‘statistical tipping point’. Assumptions at which the numerical direction of the treat-
ment effect is changed will be highlighted as the ‘clinical tipping point’. These tipping points allow an 
understanding of how imbalanced and influential an unobserved confounder would have to be in order to 
change the qualitative conclusion. The reader may then make a judgement regarding whether a confound-
er with this degree of imbalance and impact is likely to exist in the clinical setting and therefore whether 
the efficacy conclusion is robust against unobserved confounders.

4 RESULTS

4.1 SCA CREATION AND BASELINE BALANCE ACHIEVED
As described in the methods section, full matching was used to select, match, and weight the appropriate 
patients from the historical pool for inclusion in the SCA to balance the distribution of baseline character-
istics between the SCA and the investigational arm from the Target Randomized Trial. Propensity scores 
were calculated as described in the methods section and utilizing the covariates listed in Table 2. The Cloud 
Plot in Figure 1 shows the distribution of propensity scores for the investigational arm from the Target 
Randomized Trial (top) and all available control patients from other trials (bottom). The figure illustrates 
the degree to which these distributions overlap. The investigational arm from the Target Randomized Trial 
included 294 patients. Overlap in the distribution of propensity scores for the investigational arm in the 
Target Randomized Trial and the historical controls was nearly complete. Green dots represent patients 
who are successfully matched with a patient in the opposite group with a similar propensity score. Red 
circles and blue x’s represent patients for whom a match is not available. These are generally in the tails of 
the distributions and visually we can see that there are no analogous patients available in this region in the 
opposite group. Two hundred ninety (99%) in the investigational arm in the Target Randomized Trial were 
successfully matched. The remaining 4 patients (1%) were not matched and were removed from further 
analysis. A larger number of control patients are not matched and are excluded from further analysis, but 
this is of no consequence since our interest is inference regarding the investigational treatment, not the 
controls themselves.

Excluding unmatched target trial patients from further analysis is a common practice when utilizing match-
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ing methods. To many accustomed to analyzing clinical trials, this practice may seem concerning and in 
direct contradiction to the intent-to-treat principle normally relied upon in clinical trials to preserve the bal-
ance between treatment groups afforded by random treatment assignment. However, in this setting, ran-
domization is not utilized and removing patients from the target improves balance between groups rather 
than threatens it (in essence, prioritizing internal validity over external validity). This practice of removing 
patients from the target could restrict the matched patients to a set of patients with baseline characteristics 
that are not as wide ranging as is present in the target or overall disease setting and so the appropriate-
ness of extrapolating the analysis of this precise set and applying it to a more varied population should be 
considered. But with only 4 patients excluded in this case, there is likely to be very little impact on extrapo-
lation and may illustrate a possible advantage of full matching over greedy 1-1 matching, which may result 
in more patient exclusions in certain cases.

Figure 1. Cloud Plot: Distribution of Propensity Scores for Investigational Arm of 
Target Randomized Trial Versus All Available Historical Control Patients

We now consider the degree of balance that has been achieved by the propensity score full matching. 
The propensity score can be considered a summarization of all baseline characteristics and so we begin by 
examining the balance achieved in the propensity score.

The distributions of the propensity score for the investigational arm of the Target Randomized Trial and all 
available historical control patients before matching are shown in the lower set of boxplots in Figure 2. The 
analogous distributions after matching are shown in the upper region of these figures. There is consider-
able discordance between the investigational arm of the Target Randomized Trial and all available historical 
controls before matching. For example, the median for the investigational arm is higher than that of the 
historical pool. However, after matching, the medians of the groups are very similar.
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Figure 2. Distribution of Propensity Scores Before and After Matching

Assessment of balance in terms of individual baseline covariates yields observations consistent with the con-
clusions afforded above by examination of the propensity scores and indicates very good balance between 
groups after matching. Figure 3 illustrates the standardized difference between the investigational arm of 
the Target Randomized Trial and historical controls (before matching) on the left and the same between the 
matched investigational arm of the Target Randomized Trial and SCA (after matching) for each baseline char-
acteristic examined in this case study. In all cases, reductions in the absolute standardized difference between 
groups for each variable are observed and the absolute standardized differences after matching are equal to 
or below 0.10, a commonly used threshold for designating a negligible difference in the mean or prevalence 
of a covariate between groups, for all but two instances.

Figure 3. Plot of Standardized Difference of Important Baseline Covariates 
Before and After Matching
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Similarly, examination of the baseline characteristics (on their original scales) for the matched investigational 
arm of the Target Randomized Trial and the SCA reveals good balance between groups. 

The matched investigational arm of the Target Randomized Trial includes 290 patients. As shown in Table 3, 
most patients were white males from the Europe region with an average age of 63.5 years. Many patients 
were refractory to 4 or more drug classes (72.1%) and/or had prior stem cell transplant (61%) at baseline. 
The SCA is quite well balanced with the investigational arm and is weighted to represent 290 patients. 
Similar to the investigational arm, white males from the Europe region were common in the baseline esti-
mates for the SCA and the average age for the SCA was 64.3 years. Also like the investigational arm, 
the SCA includes many patients who were refractory to 4 or more drug classes (68.6%) and/or had prior 
stem cell transplant (59.3%) at baseline. Overall, very good balance in baseline characteristics is achieved 
between the investigational arm and SCA.

Table 3. Baseline Characteristics - SCA vs. Matched Investigational Arm in Target 
Randomized Trial

Baseline Characteristic Matched Investigational 
Arm in Target Randomized 

Trial
(N=290)

SCA
Weighted Summary

(N=290) 

Race (White) 235 (81.0) 241 (83.1)
Region (Europe) 232 (80.0) 224 (77.2)
ECOG=0 
ECOG=1 
ECOG=2 or 3 

105 (36.2)
134 (46.2)
51 (17.6)

91 (31.4)
144 (49.7)
55 (19.0)

Number Drug Classes Refractory 
(>=4)

209 (72.1) 199 (68.6)

Cytogenetic Risk (high) 29 (10.0) 39 (13.4)
Prior Stem Cell Transplant 177 (61.0) 172 (59.3)
Age (continuous) 63.5 (9.4) 64.3 (9.6)
Days since last PD/relapse to first 
study dose (continuous)

64.6 (80.1) 71.2 (104.5)

Sex (Male) 174 (60.0) 175 (60.3)
Bone lesion 204 (70.3) 195 (67.2)
Best response to last therapy 
(≥PR vs. <PR/unknown)

106 (36.6) 104 (35.9)

Number of prior lines of therapy 
(<4)

64 (22.1) 62 (21.4)

Years since diagnosis (continuous) 6.3 (4.1) 6.1 (4.4)
Weight (continuous) 74.5 (15.3) 73.3 (18.4)
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4.2 REPLICATION OF TREATMENT EFFECT ON OVERALL SURVIVAL WITH SCA  
(OBJECTIVE 1)

In previous sections, we have demonstrated that the propensity score full matching successfully balanced 
the distribution of baseline characteristics between the SCA and the investigational arm of the Target 
Randomized Trial. We now move to the first primary objective of this case study, to explore whether the 
treatment effect based on a SCA (i.e., matched investigational arm from Target Randomized Trial vs. SCA) 
can mimic the treatment effect based on the randomized control (i.e., investigational arm vs. randomized 
control in Target Randomized Trial).

Figure 4 provides a description of OS for four groups:
• Investigational arm of the Target Randomized Trial (red)
• Randomized control arm of the Target Randomized Trial (blue)
• Matched investigational arm of the Target Randomized Trial (brown)
• SCA (teal)

The Target Randomized Trial demonstrated a positive treatment effect on overall survival, as evidenced by 
a separation of the Kaplan Meier curves representing the investigational and randomized control arms of 
a Target Randomized Trial. The hazard ratio for the investigational arm versus the randomized control is 
0.743 with a confidence interval that excludes 1 (95% CI: (0.60, 0.92)). This difference between groups is 
also supported by the log rank test (p=0.0061).

The treatment effect utilizing SCA is very similar. The Kaplan Meier curve for the SCA visually overlaps and 
crosses with that of the randomized control and the quantified differences between SCA and the matched 
investigational arm of the Target Randomized Trial are very similar to the original trial. The hazard ratio for 
the matched investigational arm versus the SCA is 0.758 with a confidence interval that excludes 1 (95% 
CI: (0.63, 0.91)). This difference between groups is also supported by the log rank test (p=0.0158).
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Figure 4 Overall Survival Treatment Effect Using the Randomized Control Versus Using SCA

Investigational vs. Control from Target 
Randomized Trial
Log-Rank 2-sided P-value 0.0063
Hazard Ratio (95% CI) 0.74 (0.60, 0.92)

Matched Investigational from Target Rand 
Trial vs. SCA
Log-Rank 2-sided P-value 0.0158
Hazard Ratio (95% CI) 0.76 (0.63, 0.91)

5.0 T IPPING POINT ANALYSES FOR UNOBSERVED CONFOUNDERS – OBJECTIVE 2

This section illustrates an approach for testing the robustness of the treatment effect to an unobserved or 
unknown covariate. While propensity score matching can be used to balance observed covariates, it cannot 
guarantee to balance or describe balance for unobserved covariates. The HR and 95% confidence interval 
for the effect of treatment in the investigational arm of the Target Randomized Trial relative to SCA was 
estimated to be 0.76 (0.63, 0.91) but one may question whether this is due to the investigational product 
or due to an imbalance in an unknown or unmeasured confounder.

Using the methods of Lin (Lin, 1998), as described in section 3.2, the observed treatment effect can be 
adjusted to reflect the possibility of an unknown confounder when the prevalence of the confounder in 
each treatment arm is known (or assumed) and the influence the confounder has on outcomes is known 
(or assumed). For example, suppose an unknown confounder is present for only 10% of the investigational 
arm in this case study while it is present for 30% of the SCA and that the confounder is moderately predic-
tive of overall survival with a hazard ratio for overall survival for those with versus without the confounder 
of 1.5. Then the adjusted treatment effect separate from the effect of this confounder is estimated to be 
HR=0.83 with 95% CI (0.69, 0.99). This leads to a conclusion that is qualitatively consistent with that of 
the original unadjusted treatment effect, that the investigational product is providing a statistically signif-
icant benefit. If, however, we had assumed a little stronger imbalance between groups and set the prev-
alence of the confounder in the SCA slightly higher, say 35%, while all other assumptions remained the 
same, the adjusted treatment effect separate from the effect of this confounder is estimated to be HR=0.85 
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with 95% CI (0.71,1.02). These results indicate no statistically significant difference between the investi-
gational arm and the SCA and is qualitatively inconsistent with the original unadjusted analysis. That is the 
assumption of a 35% prevalence in the SCA rather than 30% is the ‘statistical tipping point’ where statis-
tical significance of the treatment effect is changed from the original unadjusted analysis. A similar thresh-
old, a ‘clinical tipping point’, exists where the numerical estimate of the HR exceeds 1 and the numerical 
trend for the treatment effect is no longer consistent with the original unadjusted analysis.

The example provided above represents just a few possible sets of assumptions regarding the unobserved 
confounder. To fully understand the possible impact of an unobserved confounder, many sets of assump-
tions, a grid across all possible or plausible assumptions should be considered. Tables 4 and 5 provide esti-
mates of the treatment effect (HR and 95% confidence interval) adjusted for a theoretical unobserved con-
founder. The prevalence of this unobserved confounder in the investigational group and SCA are assigned 
all possibilities, between 0 and 0.8 in increments of 0.05 and are included in the rows and columns of 
Tables 4 and 5. The relationship between the theoretical unobserved confounder and overall survival is 
assumed moderate (hazard ratio for those with and without the confounder set to 1.5) in Table 4 and 
strong (hazard ratio for those with and without the confounder set to 2.0) in Table 5. Entries in each of the 
cells are the adjusted treatment effects (HR and 95% CI) under these sets of conditions. 

The diagonal entries indicated in red text are under the assumption that the unobserved confounder is 
balanced between the investigational arm and the SCA and therefore the adjusted treatment effect is iden-
tical to the original analysis. Moving to the right of the diagonal, as the prevalence of the confounder is 
assumed to be higher in the SCA than the investigational arm, the HR and 95% confidence intervals initial-
ly provide the same conclusion as the original analysis, that there is a statistically significant benefit of the 
investigational product. Eventually though the imbalance in the theoretical confounder becomes enough 
to lead to the conclusion that the treatment effect is not statistically significant. This is the ‘statistical tip-
ping point’ and is represented in Tables 4 and 5 by yellow shading. Moving even further to the right and 
increasing the discrepancy in prevalence of the confounder between arms even further eventually leads to a 
numerical estimate of the HR that is bigger than 1 and is no longer directionally consistent with the original 
analysis. This is the ‘clinical tipping point’ and is represented in Tables 4 and 5 by green shading.

These tipping points allow an understanding of how imbalanced and influential an unobserved confound-
er would have to be in order to change the qualitative conclusion regarding the statistical significance or 
numerical direction of the original unadjusted treatment effect. With this information, the reader may make 
a judgement regarding whether a confounder with this degree of imbalance and impact is likely to exist in 
the clinical setting and therefore whether the efficacy conclusion is robust against unobserved confounders.

6.0 CONCLUSION

In this case study in relapsed/refractory multiple myeloma, we have demonstrated that it is possible to pro-
duce an SCA from historical clinical trial data using propensity score methods that is well balanced with the 
investigational arm at baseline. This case study further illustrated that this is possible even when the his-
torical data size is limited and without excessive exclusion of nonmatched patients from the investigational 
arm, both benefits possibly attributable to the full matching approach.
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Importantly, this case study also demonstrated the treatment effect on OS estimated in comparison to the 
randomized control was very closely matched by that of the SCA, suggesting that SCA could be used to 
augment or replace a randomized control in future trials in indications where a randomized control is ethi-
cally or practically challenging.

Tipping point analyses illustrated in this case study are an effective way of understanding the possible 
impact of unobserved confounders on the treatment effect estimates and whether the statistical and 
numerical direction of those effects are reliable despite a reasonable degree of confounding expected in the 
particular clinical setting.
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